Novel costimulators in the immune gene therapy of cancer.

Cancer Gene Ther

Department of Molecular Medicine, King's College School of Medicine and Dentistry, Rayne Institute, London, England.

Published: November 1996

One of the major goals of cancer immunotherapy is the induction of tumour-specific T-lymphocyte responses that will be effective in the rejection of established tumours. The prospects for such therapy rely on the identification of tumour antigens, and although there is persuasive evidence for the presence of such antigens,1,2 the occurrence of the disease does illustrate that the immune system is at least, on some occasions, unable to recognise and destroy these targets. Tumour antigens may be novel proteins (from genetic lesions or viral infections), modified existing antigens (eg, abnormally glycosylated cell surface proteins), or inappropriately expressed normal gene products (eg, CA125, carcinoembryonic antigen, and alpha-fetoprotein).1 Involvement of the immune system in the normal surveillance and suppression of cancer is further suggested by the increased incidence of tumours in immunocompromised patients.3 However, recent evidence has shown that, at least in model systems, cancer cells can be modulated in such a way that they stimulate cells of the immune system to recognise and destroy these malignant cells. This review summarizes the costimulatory molecules involved in the activation of such cells, the principles and mechanisms underlying their activation, and how such knowledge can be used to persuade the immune system to challenge cancer.

Download full-text PDF

Source

Publication Analysis

Top Keywords

immune system
16
tumour antigens
8
recognise destroy
8
immune
5
cancer
5
novel costimulators
4
costimulators immune
4
immune gene
4
gene therapy
4
therapy cancer
4

Similar Publications

STAT3 Orchestrates Immune Dynamics in Hepatocellular Carcinoma: A Pivotal Nexus in Tumor Progression.

Crit Rev Oncol Hematol

January 2025

Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Hubei, China.

Hepatocellular carcinoma (HCC) presents a formidable challenge in oncology, attributed to its association with chronic liver diseases and global prevalence. The immune microenvironment profoundly influences HCC progression, balancing immune suppression and antitumor responses. The Signal Transducer and Activator of Transcription 3 (STAT3) is central to this equilibrium, orchestrating immune dynamics and intertwining tumor progression with immune evasion mechanisms.

View Article and Find Full Text PDF

Mechanisms of Homoarginine: Looking Beyond Clinical Outcomes.

Acta Physiol (Oxf)

February 2025

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.

Purpose: Homoarginine (hArg) is an arginine metabolite that has been known for years, but its physiological role in the body remains poorly understood. For instance, it is well known that high hArg concentrations in the blood are protective against several disease states, yet the mechanisms behind these health benefits are unclear. This review compiles what is known about hArg, namely its synthetic pathways, its role in different diseases and conditions, and its proposed mechanisms of action in humans and experimental animals.

View Article and Find Full Text PDF

Complement-mediated thrombotic microangiopathy (TMA) in the form of atypical hemolytic uremic syndrome (aHUS) has emerged as an immune complication of systemic adeno-associated virus (AAV) gene transfer that was unforeseen based on nonclinical studies. Understanding this phenomenon in the clinical setting has been limited by incomplete data and a lack of uniform diagnostic and reporting criteria. While apparently rare based on available information, AAV-associated TMA/aHUS can pose a substantial risk to patients including one published fatality.

View Article and Find Full Text PDF

Characterization of Cutaneous Radiation Syndrome in a Mouse Model Using [18F]F- Fluorodeoxyglucose Positron Emission Tomography.

Health Phys

January 2025

Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL.

Ionizing radiation on the skin has the potential to cause various sequelae affecting quality of life and even leading to death due to multi-system failure. The development of radiation dermatitis is attributed to oxidative damage to the skin's basal layer and alterations in immune response, leading to inflammation. Past studies have shown that [18F]F-2-fluoro-2-deoxyglucose positron emission tomography-computed tomography ([18F]F-FDG PET/CT) can be used effectively for the detection of inflammatory activity, especially in conditions like hidradenitis suppurativa, psoriasis, and early atherosclerosis.

View Article and Find Full Text PDF

Unlabelled: Respiratory and encephalitic virus infections represent a significant risk to public health globally. Detailed investigations of immunological responses and disease outcomes during sequential virus infections are rare. Here, we define the impact of influenza virus infection on a subsequent virus encephalitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!