Triple helix formation by oligonucleotides can be extended beyond polypurine tracts with the help of specially designed linkers. In this paper we focus our attention on the integrase-binding site of the HIV-1 virus located on the U5 LTR end which contains two adjacent purine tracts on opposite strands. Two alternate triple helices with a 3'-3' junction in the third strand are considered: 5'-GGTTTTp3'-3'pTGTGT-5' and 5'-GGAAAAp3'-3'pAGAGA-5' The structural plausibility of these triplexes is investigated using molecular mechanics and dynamics simulations, both in vacuo and in aqua. The non-isomorphism of the triplets in the GpT steps in the first sequence, gives rise to non canonical conformations in the torsion angles, hydration appears to be crucial for this triplex. Sugar puckers are predominantly South during in vacuo simulations while they turn East in aqua. In the simulation in aqua the triplexes are shrouded by an hydration shell, however, we have not been able to detect any permanent hydrogen bond bridge between DNA and water. The solvation of ions as well as their radial distribution, appear to be relatively well behaved despite the artifacts known to be generated by the simulation procedure. The experimental feasibility of these structures is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.1996.10508896 | DOI Listing |
Sci Rep
December 2024
Department of Physics, Indian Institute of Technology, Patna, 801106, Bihar, India.
A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.
View Article and Find Full Text PDFNat Commun
December 2024
Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio.
View Article and Find Full Text PDFNat Commun
December 2024
School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA.
This work aims to address key issues in the ballistic performance of ceramic-based composite armor, particularly at the joints of spliced bulletproof panels. The edge structure of C/C-SiC ceramic plates and ultra-high molecular weight polyethylene is redesigned to superimpose the joint areas. These structurally optimized composite pads are examined by numerical simulation of impact dynamics to understand their anti-penetration performance whose accuracy is then validated by live fire tests.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.
The oil and gas industry faces two significant challenges, including rising global temperatures and depletion of reserves. Enhanced recovery techniques such as polymer flooding have positioned themselves as an alternative that attracts international attention thanks to increased recovery factors with low emissions. However, existing physical models need further refinement to improve predictive accuracy and prevent design failures in polymer flooding projects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!