Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of immunotoxins (ITs) in the therapy of cancer, graft-vs-host disease (GvHD), autoimmune diseases, and AIDS has been ongoing for the past two decades. ITs contain a targeting moiety for delivery and a toxic moiety for cytotoxicity. Theoretically, one molecule of a toxin, routed to the appropriate cellular compartment, will be lethal to a cell. Newly developed MoAbs, toxins, and molecular biological technologies have enabled researchers to construct ITs that can effectively kill many different cell types. In fact, phase I/II clinical trials have given promising results. Although nonspecific toxicity and immunogenicity still limit the use of IT therapy, these agents hold enormous promise in an optimal setting to treat minimal disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev.immunol.14.1.49 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!