On the issue of the mechanism of muscle contraction, the views of the late G.M. Frank, to whom this symposium is dedicated, differed fundamentally from those of the then-current orthodoxy. Frank could not accept the idea of filament sliding brought about by swinging cross-bridges. He seemed particularly moved by two observations from his laboratory: the first, that the A-band shortened during active contraction; and the second, that sarcomere shortening occurred in stepwise fashion. From these findings principally, Frank came to the view that contraction involved a stepwise shortening of thick filaments. Although this view is broadly held to be incorrect, I will present evidence that it may constitute at least a partial answer. I will consider the evidence that both of Frank's principal findings-stepwise shortening and thick filament shortening-may be valid attributes of the contractile mechanism. I will then go on to show how these two attributes fit into an overall mechanism-not dissimilar to the one put forth by Frank.
Download full-text PDF |
Source |
---|
Mol Med
January 2025
The First People's Hospital of Lin'an District, No. 360, Yikang Street, Jinnan Subdistrict, Lin'an District, Hangzhou, Zhejiang, 311300, China.
Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China.
Stress urinary incontinence (SUI) currently lacks effective treatment options, and the restoration of neurological function remains a major challenge, with unmet clinical needs. Research has indicated that adipose-derived stem cells (ADSCs) can be induced to differentiate into neural-induced adipose-derived stem cells (NI-ADSCs) under specific inductive conditions, exhibiting excellent neuroregenerative capabilities. ADSCs were obtained from female SD rats and induced into NI-ADSCs.
View Article and Find Full Text PDFJ Voice
January 2025
Department of Speech, Language, and Hearing Sciences, Auburn University, Auburn, AL.
Purpose: Blood lactate concentration is commonly used to assess metabolic demand and skeletal muscle training response. The objective of the pilot study was to investigate if a change in blood lactate was detectable in an anaerobically designed vocal demand task vocal capacity anaerobic task (VCAT) and determine if the developed vocal demand task may assess the anaerobic capacity of the voice musculature, like anaerobic power tests commonly used in applied exercise science.
Methods: A prospective repeated measures study quantified blood lactate concentration preVCAT and postVCAT in vocally healthy adults.
J Neurosci
January 2025
Carney Institute for Brain Science, Brown University, Providence, RI 02912
The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!