Treatment of cultured hepatocytes with a combination of cytokines, including tumour necrosis factor-alpha, interferon-gamma and interleukin-1 beta, plus lipopolysaccharide resulted in a time-dependent induction of nitric oxide (NO) synthase (as measured by NO2- (+) NO3- production) and inhibition of hepatic gluconeogenesis and glycogen breakdown. The inhibition of glucose release was comparable with the observed following treatment of rats with lipopolysaccharide or treatment of isolated hepatocytes with artificial NO donors. In addition, this effect was also evident with all substrates tested that enter the gluconeogenic pathway below the level of phosphoenolpyruvate carboxykinase, suggesting that this combination of cytokines may underlie the inhibition of gluconeogenesis observed in endotoxic shock. The maximal inhibition of glucose output required the presence of all the cytokines plus lipopolysaccharide, whereas the induction of NO synthase was independent of the lipopolysaccharide when the cytokines were employed. Inclusion of interferon-gamma was essential to obtain a maximal response for either parameter. Inclusion of 1 mM N(G)-monomethyl-L-arginine in the incubation abolished the increase in NO2- (+) NO3- observed with the complete cytokine mixture and various combinations; however, it failed to prevent the inhibition in glucose output, indicating that mechanisms other than NO underlie the cytokine-induced inhibition of glucose release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1217515PMC
http://dx.doi.org/10.1042/bj3170503DOI Listing

Publication Analysis

Top Keywords

inhibition glucose
16
nitric oxide
8
cultured hepatocytes
8
combination cytokines
8
no2- no3-
8
glucose release
8
glucose output
8
inhibition
6
glucose
5
multiple cytokines
4

Similar Publications

Self-Cascade of ROS/Glucose-Scavenging Immunomodulatory Hydrogels for Programmed Therapeutics of Infected Diabetic Ulcers via Nrf2/NF-κB Pathway.

Small

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.

View Article and Find Full Text PDF

Improving Renal Protection in Chronic Kidney Disease Associated with Type 2 Diabetes: The Role of Finerenone.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Internal Medicine, Division of Nephrology and Hypertension, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia.

Chronic kidney disease (CKD) is a major complication of type 2 diabetes mellitus (T2D), which often leads to diabetic kidney disease (DKD). Traditional therapies, including renin- angiotensin-aldosterone system inhibitors and sodium-glucose cotransporter-2 inhibitors, are effective in slowing CKD progression. However, these approaches are insufficient to comprehensively inhibit mineralocorticoid receptor (MR) overactivation in the kidneys, which remains a significant driver of inflammation, fibrosis, and oxidative stress.

View Article and Find Full Text PDF

Protective Effects of Hydrogen Treatment Against High Glucose-Induced Oxidative Stress and Apoptosis via Inhibition of the AGEs/RAGE/NF-κB Signaling Pathway in Skin Cells.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Burn and Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Background: Diabetic wounds are major clinical challenges, often complicated by oxidative stress and free radical generation. Hydrogen (H2), a selective antioxidant, offers potential as a therapeutic agent for chronic diabetic wounds. However, its precise mechanisms remain underexplored.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.

View Article and Find Full Text PDF

AENK ameliorates cognitive impairment and prevents Tau hyperphosphorylation through inhibiting AEP-mediated cleavage of SET in rats with ischemic stroke.

J Neurochem

January 2025

Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Brain damage induced by ischemia promotes the development of cognitive dysfunction, thus increasing the risk of dementia such as Alzheimer's disease (AD). Studies indicate that cellular acidification-triggered activation of asparagine endopeptidase (AEP) plays a key role in ischemic brain injury, through multiple molecular pathways, including cleavage of its substrates such as SET (inhibitor 2 of PP2A, I ) and Tau. However, whether direct targeting AEP can effectively prevent post-stroke cognitive impairment (PSCI) remains unanswered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!