Treatment of cultured hepatocytes with a combination of cytokines, including tumour necrosis factor-alpha, interferon-gamma and interleukin-1 beta, plus lipopolysaccharide resulted in a time-dependent induction of nitric oxide (NO) synthase (as measured by NO2- (+) NO3- production) and inhibition of hepatic gluconeogenesis and glycogen breakdown. The inhibition of glucose release was comparable with the observed following treatment of rats with lipopolysaccharide or treatment of isolated hepatocytes with artificial NO donors. In addition, this effect was also evident with all substrates tested that enter the gluconeogenic pathway below the level of phosphoenolpyruvate carboxykinase, suggesting that this combination of cytokines may underlie the inhibition of gluconeogenesis observed in endotoxic shock. The maximal inhibition of glucose output required the presence of all the cytokines plus lipopolysaccharide, whereas the induction of NO synthase was independent of the lipopolysaccharide when the cytokines were employed. Inclusion of interferon-gamma was essential to obtain a maximal response for either parameter. Inclusion of 1 mM N(G)-monomethyl-L-arginine in the incubation abolished the increase in NO2- (+) NO3- observed with the complete cytokine mixture and various combinations; however, it failed to prevent the inhibition in glucose output, indicating that mechanisms other than NO underlie the cytokine-induced inhibition of glucose release.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1217515 | PMC |
http://dx.doi.org/10.1042/bj3170503 | DOI Listing |
Small
January 2025
Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Internal Medicine, Division of Nephrology and Hypertension, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia.
Chronic kidney disease (CKD) is a major complication of type 2 diabetes mellitus (T2D), which often leads to diabetic kidney disease (DKD). Traditional therapies, including renin- angiotensin-aldosterone system inhibitors and sodium-glucose cotransporter-2 inhibitors, are effective in slowing CKD progression. However, these approaches are insufficient to comprehensively inhibit mineralocorticoid receptor (MR) overactivation in the kidneys, which remains a significant driver of inflammation, fibrosis, and oxidative stress.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Burn and Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
Background: Diabetic wounds are major clinical challenges, often complicated by oxidative stress and free radical generation. Hydrogen (H2), a selective antioxidant, offers potential as a therapeutic agent for chronic diabetic wounds. However, its precise mechanisms remain underexplored.
View Article and Find Full Text PDFJ Cent Nerv Syst Dis
January 2025
School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Brain damage induced by ischemia promotes the development of cognitive dysfunction, thus increasing the risk of dementia such as Alzheimer's disease (AD). Studies indicate that cellular acidification-triggered activation of asparagine endopeptidase (AEP) plays a key role in ischemic brain injury, through multiple molecular pathways, including cleavage of its substrates such as SET (inhibitor 2 of PP2A, I ) and Tau. However, whether direct targeting AEP can effectively prevent post-stroke cognitive impairment (PSCI) remains unanswered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!