Purpose: To investigate whether transdermal iontophoresis may be potentially useful for delivery of oligonucleotide drugs, the electrotransport of representative bases (uracil and adenine), nucleosides (uridine and adenosine) and nucleotides (AMP, ATP, GTP and imido-GTP) across mammalian skin in vitro has been considered.
Methods: While the passive permeability of all compounds investigated (from 1 mM solutions at pH 7.4) was very low, the application of constant current iontophoresis (0.55 mA/cm2) significantly enhanced the transport of both charged and uncharged species.
Results: The efficiency of delivery depended only weakly upon lipophilicity, varied quite linearly with concentration (for AMP and ATP), was inversely sensitive to molecular weight, and was strongly influenced by charge. Neutral solutes were delivered better from the anode than the cathode, as expected; post-iontophoresis, passive permeabilities were greater than those of the untreated controls, suggesting that iontophoretically-induced changes in barrier function cannot be completely repaired in in vitro model systems. The triphosphate nucleotides, ATP and GTP, were essentially completely metabolized (presumably to their corresponding mono-phosphates) during their iontophoretic delivery, while imido-GTP was apparently resistant to enzymatic attack; however, comparison of the transport data from AMP and ATP suggested that ATP metabolism occurred primarily after the rate-limiting step of iontophoresis.
Conclusions: The results obtained are consistent with the general patterns of behavior previously observed in investigations of amino acid and peptide electrotransport. It remains to be seen whether extension of the research described here to larger oligonucleotide species is a feasible long-term objective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1016041904037 | DOI Listing |
Sci Rep
January 2025
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States.
AMP-activated protein kinase (AMPK) is a central mediator of cellular metabolism and is activated in direct response to low ATP levels. Activated AMPK inhibits anabolic pathways and promotes catabolic activities that generate ATP through the phosphorylation of multiple target substrates. AMPK is a therapeutic target for activation in several chronic metabolic diseases, and there is increasing interest in targeting AMPK activity in cancer where it can act as a tumor suppressor or conversely it can support cancer cell survival.
View Article and Find Full Text PDFAnalyst
January 2025
School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand.
Nicotinamide adenine dinucleotide is a crucial coenzyme in cellular metabolism and is implicated in various diseases. This work introduces an electrochemical bioanalytical method utilizing solution-phase formate dehydrogenase (CbFDH) for detecting its oxidized form (NAD) in human blood plasma samples. The detection mechanism involves the catalytic conversion of NAD to NADH, facilitated by CbFDH in the presence of formate.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical and Biological Physics, Weizmann Institute of Science Rehovot 761001 Israel
Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP.
View Article and Find Full Text PDFJDS Commun
January 2025
Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611-0910.
Pharmacological elevation of cyclic AMP (cAMP) of cultured cumulus-oocyte complexes (COC) before or coincident with initiation of maturation has been reported to improve outcomes for various systems for in vitro production of embryos. Here it was hypothesized that artificial elevation of cAMP in the oocyte for a 2-h period of prematuration would improve developmental competence of matured oocytes and result in increased blastocyst yield and altered expression of genes important for embryonic differentiation. Treated COC were cultured for 2 h with dibutyryl cAMP (dbcAMP), a membrane-permeable form of cAMP, and 3-isobutyl-1-methylxanthine (IBMX), which inhibits phosphodiesterases that convert cAMP to ATP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!