Left ventricular hypertrophy (LVH) in spontaneously hypertensive rats (SHR) is accompanied by a structural remodeling of the myocardium that includes myocyte hypertrophy and interstitial and perivascular fibrosis of intramyocardial coronary arteries. The structural abnormalities related to fibrous tissue accumulation lead to increased myocardial diastolic stiffness and ultimately impaired systolic function of the left ventricle. It has been shown in 14-week-old SHR with early hypertensive heart disease that myocardial fibrosis could be reversed and myocardial diastolic stiffness normalized by 12-week treatment with the angiotensin-converting enzyme inhibitor lisinopril. Whether such functional defects of the myocardium, based on adverse structural changes, are also reversible in advanced hypertensive heart disease has been questioned. Therefore, we treated 78-week-old male SHR that had chronic hypertension and advanced LVH with severe myocardial fibrosis and age- and sex-matched normotensive Wistar-Kyoto rats (WKY) with 20 mg/kg per day oral lisinopril for 8 months. Compared with untreated SHR or WKY, we found the following: (1) Systolic arterial pressure was normalized (P < .025) and LVH completely reversed (P < .025) in SHR, with no significant reduction in systolic arterial pressure or left ventricular mass in WKY; (2) morphometrically determined myocardial fibrosis in SHR was significantly reversed (P < .025) and associated with improved diastolic stiffness (P < .05), which was measured in the isolated heart by calculation of the stiffness constant of the myocardium; no significant changes occurred in WKY; (3) reversal of myocardial fibrosis was accompanied by an increase (P < .025) in myocardial matrix metalloproteinase 1 activity determined by degradation of [14C]collagen with myocardial tissue extracts after trypsin activation of myocardial promatrix metalloproteinase 1; matrix metalloproteinase 1 activity remained unchanged in WKY treated with lisinopril; and (4) systolic dysfunction, measured by a significantly (P < .025) diminished slope of the systolic stress-strain relation under isovolumic conditions of the left ventricle, was found in 110-week-old SHR, and it could be prevented by lisinopril treatment. Thus, long-term angiotensin-converting enzyme inhibition with lisinopril normalized arterial pressure and LVH, reversed myocardial fibrosis, and improved abnormal myocardial diastolic stiffness in advanced hypertensive heart disease in SHR. In addition, systolic dysfunction of the left ventricle could be prevented. The fibrolytic response to lisinopril was at least partly due to enhanced collagen degradation by activation of tissue matrix metalloproteinase 1.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.hyp.28.2.269DOI Listing

Publication Analysis

Top Keywords

myocardial fibrosis
24
hypertensive heart
16
heart disease
16
diastolic stiffness
16
advanced hypertensive
12
myocardial
12
myocardial diastolic
12
left ventricle
12
arterial pressure
12
matrix metalloproteinase
12

Similar Publications

This study aimed to investigate the correlation of the increased volume index of epicardial adipose tissue (EAT) and left ventricular hypertrophy (LVH) in patients with Hypertension (HTN). A total of 209 HTN patients and 50 healthy controls, who underwent cardiovascular magnetic resonance (CMR) at two medical centers in China between June 2015 and October 2024, were enrolled for this study. Postprocessing and imaging analysis were conducted and EAT measurements were performed.

View Article and Find Full Text PDF

The left atrium (LA) is pivotal in cardiac hemodynamics, serving as a dynamic indicator of left ventricular (LV) compliance and diastolic function. The LA undergoes structural and functional adaptations in response to hemodynamic stress, infiltrative processes, myocardial injury, and arrhythmic triggers. Remodeling of the LA in response to these stressors directly impacts pulmonary circulation, eventually leading to pulmonary capillary involvement, pulmonary artery hypertension, and eventually right ventricular failure.

View Article and Find Full Text PDF

Parametric mapping has become a standard of care technique for the non-invasive assessment of myocardial edema and fibrosis. Conventional MOLLI-based T1 mapping is susceptible to many confounding effects particularly in the pediatric population. The requirement for compliant breath holds is a major limitation for younger or more ill patients.

View Article and Find Full Text PDF

Doxorubicin-induced cardiomyopathy (DOX-IC) is a significant and common complication in patients undergoing chemotherapy, leading to cardiac remodeling and reduced heart function. We hypothesized that the intrapericardial injection of hydrogels derived from the cardiac decellularized extracellular matrix (dECM) loaded with adipose tissue-derived stromal cells (ASC) and their secretome dampens or reverses the progression of DOX-IC. DOX-IC was induced in Wistar male rats through ten weekly intra-peritoneal injections of doxorubicin (cumulative dose: 18 mg/kg).

View Article and Find Full Text PDF

The global prevalence of heart failure is still growing, which imposes a heavy economic burden. The role of microRNA-146b (miR-146b) in HF remain largely unknown. This study aims to explore the role and mechanism of miR-146b in HF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!