4-Hydroxybenzoate hydroxylase from Pseudomonas sp. CBS3 was purified by five consecutive steps to apparent homogeneity. The enrichment was 50-fold with a yield of about 20%. The enzyme is a homodimeric flavoprotein monooxygenase with each 44-kDa polypeptide chain containing one FAD molecule as a rather weakly bound prosthetic group. In contrast to other 4-hydroxybenzoate hydroxylases of known primary structure, the enzyme preferred NADH over NADPH as electron donor. The pH optimum for catalysis was pH 8.0 with a maximum turnover rate around 45 degrees C. Chloride ions were inhibitory, and competitive with respect to NADH. 4-Hydroxybenzoate hydroxylase from Pseudomonas sp. CBS3 has a narrow substrate specificity. In addition to the transformation of 4-hydroxybenzoate to 3,4-dihydroxybenzoate, the enzyme converted 2-fluoro-4-hydroxybenzoate, 2-chloro-4-hydroxybenzoate, and 2,4-dihydroxybenzoate. With all aromatic substrates, no uncoupling of hydroxylation was observed. The gene encoding 4-hydroxybenzoate hydroxylase from Pseudomonas sp. CBS3 was cloned in Escherichia coli. Nucleotide sequence analysis revealed an open reading frame of 1182 bp that corresponded to a protein of 394 amino acid residues. Upstream of the pobA gene, a sequence resembling an E. coli promoter was identified, which led to constitutive expression of the cloned gene in E. coli TG1. The deduced amino acid sequence of Pseudomonas sp. CBS3 4-hydroxybenzoate hydroxylase revealed 53% identity with that of the pobA enzyme from Pseudomonas fluorescens for which a three-dimensional structure is known. The active-site residues and the fingerprint sequences associated with FAD binding are strictly conserved. This and the conservation of secondary structures implies that the enzymes share a similar three-dimensional fold. Based on an isolated region of sequence divergence and site-directed mutagenesis data of 4-hydroxybenzoate hydroxylase from P. fluorescens, it is proposed that helix H2 is involved in determining the coenzyme specificity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1996.0469u.x | DOI Listing |
Int J Biol Macromol
August 2024
Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea; Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea. Electronic address:
p-Hydroxybenzoate hydroxylase (PHBH) catalyzes the ortho-hydroxylation of 4-hydroxybenzoate (4-HB) to protocatechuate (PCA). PHBHs are commonly known as homodimers, and the prediction of pyridine nucleotide binding and specificity remains an ongoing focus in this field. Therefore, our study aimed to determine the dimerization interface in AspPHBH from Arthrobacter sp.
View Article and Find Full Text PDFSci Rep
June 2024
Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
Metabolites exploration of the ethyl acetate extract of Fusarium solani culture broth that was isolated from Euphorbia tirucalli root afforded five compounds; 4-hydroxybenzaldehyde (1), 4-hydroxybenzoic acid (2), tyrosol (3), azelaic acid (4), malic acid (5), and fusaric acid (6). Fungal extract as well as its metabolites were evaluated for their anti-inflammatory and anti-hyperpigmentation potential via in vitro cyclooxygenases and tyrosinase inhibition assays, respectively. Azelaic acid (4) exhibited powerful and selective COX-2 inhibition followed by fusaric acid (6) with IC values (2.
View Article and Find Full Text PDFPlant Foods Hum Nutr
March 2024
Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, Olomouc, 78371, Czech Republic.
J Biol Chem
January 2024
Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan. Electronic address:
Para-hydroxybenzoate hydroxylase (PHBH) is a group A flavoprotein monooxygenase that hydroxylates p-hydroxybenzoate to protocatechuate (PCA). Despite intensive studies of Pseudomonas aeruginosa p-hydroxybenzoate hydroxylase (PaPobA), the catalytic reactions of extremely diverse putative PHBH isozymes remain unresolved. We analyzed the phylogenetic relationships of known and predicted PHBHs and identified eight divergent clades.
View Article and Find Full Text PDFChemistry
February 2024
Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.
The cytochrome P450 monooxygenases (CYPs) are a class of heme-thiolate enzymes that insert oxygen into unactivated C-H bonds. These enzymes can be converted into peroxygenases via protein engineering, which enables their activity to occur using hydrogen peroxide (H O ) without the requirement for additional nicotinamide co-factors or partner proteins. Here, we demonstrate that soaking crystals of an engineered P450 peroxygenase with H O enables the enzymatic reaction to occur within the crystal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!