Two nuclear factors, designated NF-PI and NF-P2, have been shown to bind to an enhancer 9-base motif (5'-ACAGGAAGT-3', NF-P motif) present within the 5'-flanking region of the mouse perforin gene. Our previous studies have shown that, although NF-P1 and NF-P2 differ in cell-type distribution and molecular mass, with NF-P2 being killer-cell-specific and smaller, the two factors appear to share common DNA-binding subunit(s). We have postulated that the biochemical event involved in the induction of NF-P2 could be the dissociation of a non-DNA-binding subunit from NF-P1, rendering the newly formed NF-P2 transcriptionally active. By using a cell-free system in the present study, we have demonstrated that a variety of chemical agents capable of denaturing or dissociating protein complexes, including guanidinium/HCl, detergents (SDS plus Nonidet P-40) and high-salt solutions, could convert NF-P1 into NF-P2. Unlike in intact cells, where induction of NF-P2 is restricted to killer lymphocytes, this conversion occurred in nuclear extracts derived from both cytotoxic lymphocytes and non-cytotoxic cells. Although the mechanism that restricts the induction of NF-P2 to killer- lymphocytes in vivo remains unresolved, these results support the hypothetical 'dissociation' model for the generation of NF-P2. The results also imply that the absence of perforin expression in non-cytotoxic cells may be due to the suppression of the induction of the killer-cell-specific trans-acting factor NF-P2.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1996.0639w.xDOI Listing

Publication Analysis

Top Keywords

induction nf-p2
12
nf-p2
10
mouse perforin
8
perforin gene
8
nf-p1 nf-p2
8
non-cytotoxic cells
8
cell-free conversion
4
conversion ubiquitous
4
ubiquitous nuclear
4
nuclear protein
4

Similar Publications

Two nuclear factors, designated NF-PI and NF-P2, have been shown to bind to an enhancer 9-base motif (5'-ACAGGAAGT-3', NF-P motif) present within the 5'-flanking region of the mouse perforin gene. Our previous studies have shown that, although NF-P1 and NF-P2 differ in cell-type distribution and molecular mass, with NF-P2 being killer-cell-specific and smaller, the two factors appear to share common DNA-binding subunit(s). We have postulated that the biochemical event involved in the induction of NF-P2 could be the dissociation of a non-DNA-binding subunit from NF-P1, rendering the newly formed NF-P2 transcriptionally active.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!