Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1464-410x.1996.07035.xDOI Listing

Publication Analysis

Top Keywords

extensive bladder
4
bladder infarction
4
infarction strangulated
4
strangulated inguinal
4
inguinal hernia
4
extensive
1
infarction
1
strangulated
1
inguinal
1
hernia
1

Similar Publications

The primary objective of this study was to conduct a comprehensive analysis of the mechanism by which TCF7 recombinant protein operates, as well as to examine its expression patterns within bladder cancer cells. This research seeks to establish a new theoretical framework and provide experimental data that could advance the field of molecular targeted therapy for bladder cancer. Erlotinib, a well-known targeted therapy drug, was administered to the bladder cancer cells, and we evaluated its antitumor effects through various assays such as cell proliferation, apoptosis, and cell cycle analysis.

View Article and Find Full Text PDF

Background: Neuromyelitis optica spectrum disorders (NMOSDs) are degenerative diseases frequently associated with severe recurrences and high risk of progressive disability. In this report, we describe an unusual case of a patient with the coexistence between NMOSD and mixed connective tissue disease (MCTD).

Case Description: A 58-year-old Caucasian man was admitted to the Emergency Department (ED) with low back pain and walking inability.

View Article and Find Full Text PDF

Objectives: To evaluate the association of pre- and post-diagnosis fluid intake with non-muscle-invasive bladder cancer (NMIBC) recurrence and progression risk.

Patients And Methods: Data were used from the multicentre prospective cohort study UroLife. Participants reported pre-diagnosis fluid intake at 6 weeks (food frequency questionnaire [FFQ]) (n = 1322) and post-diagnosis fluid intake at 3 and 15 months (FFQ and 4-day 24-h fluid diaries) (n = 1275) after diagnosis.

View Article and Find Full Text PDF

Cancer prognosis using base excision repair genes.

Mol Cells

January 2025

College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Gradutate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:

The base excision repair (BER) pathway is a critical mechanism in genomic stability. This review investigates the role of the BER pathway in advanced cancer therapies considering the pivotal role of genetic factors in cancer patient responses and prognosis. BER factors significantly influence genetic instability and cancer prognosis, as well as the effectiveness of chemotherapy and radiation therapy.

View Article and Find Full Text PDF

Solution-phase nucleic acid reaction weaves interfacial barriers on unmodified electrodes: Just-in-time generation of sensor interface for convenient and highly sensitive bioassays.

Talanta

January 2025

The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:

Electrochemical bioassays that rely on sensor interfaces based on immobilized DNA probes often encounter challenges such as complex fabrication processes and limited binding efficiency. In this study, we developed a novel electrochemical bioassay that bypasses the need for probe immobilization by employing a solution-phase nucleic acid reaction to create interfacial barriers on unmodified electrodes, enabling rapid, just-in-time sensor interface formation. Specifically, a 3'-phosphorylated recognition probe was used to identify the target microRNA-21 (miR-21), followed by target recycling facilitated by duplex-specific nuclease (DSN), which resulted in extensive hydrolysis of the recognition probe into DNA fragments with 3'-hydroxyl ends.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!