Bee venom hypersensitivity and its management: patients perception of venom desensitisation.

Asian Pac J Allergy Immunol

Department of Clinical Immunology, Flinders Medical Centre, Bedford Park, Australia.

Published: December 1995

The objectives of the study were to review bee venom immunotherapy from the patient's perspective: in particular its benefits and its problems, and to investigate any genetic tendency for bee venom hypersensitivity. A self administered, 9 item questionnaire was sent to 219 patients who had undergone either inpatient or outpatient bee venom immunotherapy at Flinders Medical Center. The clinic records of these patients were also reviewed. The controls for the genetic study were sought from patients, staff and students at Flinders University and Flinders Medical Centre. One hundred and forty-six questionnaires (some incomplete and anonymous) were received. The female to male ratio was 1:2.5. The age at the time of the initial anaphylactic reaction to a bee sting ranged between 2 to 59 years, with 67% of patients being less then 20 years old. Forty percent of patients underwent venom immunotherapy for a period less than 2 years with only 11% maintaining therapy for the recommended period of 5 years or more. Thirty three percent of patients stopped their therapy on their own accord. Bee stings occurring during bee venom immunotherapy (n = 56) were generally well tolerated except in 8 subjects, 7 of whom had not reached the maintenance dose. The reduction in systemic reactions to subsequent bee stings was significantly better in the study group receiving bee venom than in an historic control group treated with whole bee extract (p = 0.03). Fear of bee stings and restricted life styles were improved during or after venom immunotherapy. The frequency of a positive family history of systemic reactions to bee stings in the patient cohort was 31%, whereas in controls it was 15% (p = 0.013). Bee venom immunotherapy has dual benefits: patients are protected from subsequent sting anaphylaxis and there is reduced psychological morbidity. However, to be effective, venom immunotherapy requires a prolonged period of carefully supervised treatment and each venom injection can cause local and systemic side effects. Genetic factors appear to be present in those patients who develop immediate hypersensitivity to be stings.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bee venom
28
venom immunotherapy
28
bee stings
16
bee
13
venom
11
patients
9
venom hypersensitivity
8
flinders medical
8
percent patients
8
period years
8

Similar Publications

Immune thrombocytopenia (ITP) is an autoimmune hematological condition characterized by a markedly isolated decrease in platelets without any apparent associated clinical conditions, resulting in bleeding and bruising of the skin, mucous membranes, and major organs. It is often triggered by preceding illness or several immune stimulants such as immunizations, infections, allergic reactions, among others. While uncommon, arthropod bites can trigger acute ITP.

View Article and Find Full Text PDF

Bee venom (BV) represents a promising natural alternative to conventional antibiotics, particularly significant given its broad-spectrum antimicrobial activity and potential to address the growing challenge of antimicrobial resistance. The prevalence of antimicrobial-resistant microorganisms (AMR) is a global burden that affects human health and the economies of different countries. As a result, several scientific communities around the world are searching for safe alternatives to antibiotics.

View Article and Find Full Text PDF

Background: Bee venom consists of more than 50 % melittin (MLT), which has anti-cancer, anti-inflammatory, and antimicrobial properties. Bee venom also contains toxic components such as phospholipase A2 (PLA2) and hyaluronidase (HYA), which cause allergic reactions, so the toxic components must be removed to use MLT. In previous studies, analytical methods were used to separate MLT.

View Article and Find Full Text PDF

Background: Melittin, a major peptide component of bee venom, has demonstrated promising anti-cancer activity across various preclinical cell models, making it a potential candidate for cancer therapy. However, its molecular mechanisms, particularly in ovarian cancer, remain largely unexplored. Ovarian cancer is a life-threatening gynecological malignancy with poor clinical outcomes and limited treatment options.

View Article and Find Full Text PDF

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!