A Laminaria saccharina genomic library in the phage EMBL 4 was used to isolate and sequence a full-length gene encoding a fucoxanthin-chlorophyll a/c-binding protein. Contrary to diatom homologues, the coding sequence is interrupted by an intron of about 900 bp which is located in the middle of the transit peptide. The deduced amino acid sequence of the mature protein is very similar to those of related proteins from Macrocystis pyrifera (Laminariales) and, to a lesser extent, to those from diatoms and Chrysophyceae. Seven of the eight putative chlorophyll-binding amino acids determined in green plants are also present. Alignments of different sequences related to the light-harvesting proteins (LHC) demonstrate a structural similarity among the three transmembrane helices and suggest a unique ancestral helix preceded by two beta-turns. The beta-turns are conserved in front of the second helices of the chlorophyll a/c proteins more so than in chlorophyll a/b proteins. Phylogenetic trees generated from sequence data indicate that fucoxanthin-chlorophyll-binding proteins diverged prior to the separation of photosystem I and photosystem II LHC genes of green plants. Among the fucoxanthin-containing algae, LHC I or II families could not be distinguished at this time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02338835 | DOI Listing |
J Integr Plant Biol
December 2024
Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for light harvesting and energy quenching under marine environments. Here we report two cryo-electron microscopic structures of photosystem I (PSI) with either 13 or five fucoxanthin chlorophyll a/c-binding protein Is (FCPIs) at 2.78 and 3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
Elife
October 2024
Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
Nat Commun
August 2024
Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Photosystem II (PSII) catalyzes the light-driven charge separation and water oxidation reactions of photosynthesis. Eukaryotic PSII core is usually associated with membrane-embedded light-harvesting antennae, which greatly increase the absorbance cross-section of the core. The peripheral antennae in different phototrophs vary considerably in protein composition and arrangement.
View Article and Find Full Text PDFPlant Commun
November 2024
Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; China National Botanical Garden, Beijing 100093, P.R. China; Academician Workstation of the Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, P.R. China. Electronic address:
Diatoms, a group of prevalent marine algae, contribute significantly to global primary productivity. Their substantial biomass is linked to enhanced absorption of blue-green light underwater, facilitated by fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs), which exhibit oligomeric diversity across diatom species. Using mild clear native PAGE analysis of solubilized thylakoid membranes, we displayed monomeric, dimeric, trimeric, tetrameric, and pentameric FCPs in diatoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!