There is concern that live pseudorabies virus (PRV) vaccine or PRV vector vaccine strains may spread from vaccinated to unvaccinated pigs. Moreover, it is feared that recombining PRV vaccine strains with related vaccine or wild-type strains may lead to spread and survival of recombinant PRV. To learn more about to what extent different PRV vaccine strains could spread we used a previously described experimental model to study the transmission of intranasally inoculated PRV mutant strains under experimental conditions. We used PRV strains that lacked glycoprotein E (gE) or thymidine kinase (TK), and a PRV vector vaccine (gE-, TK-, gG-) that expresses the glycoprotein E1 (E1) of hog cholera virus. In addition, we investigated whether intranasally co-inoculated gE-negative and gE-positive PRV strains competed in transmission among pigs. The extent of transmission was estimated using the reproduction ratio R. This ratio has a threshold property; when R1, the infection can spread; when R < 1, the infection will disappear. We found that R for a gE-negative strain was 10.1, and R for a TK-negative strain was 5. Furthermore, the R for the vector vaccine (gE-, TK-, gG-) expressing E1 was 0.18, and did not differ significantly from the R for the control strain without E1. The R of gE-negative strain was significantly 1 (P = 0.0005). Co-inoculation with a gE-positive field strain did not prevent the transmission of a gE-negative strain. This study shows that a small-scale experiment can be used to estimate the transmission of genetically engineered organisms in their host species. The results of this study indicate that the deletion of gE alone or TK alone is not enough to prevent spread of PRV among susceptible pigs, and that transmission of gE-negative PRV is not firmly limited by co-presence of a gE-positive strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0264-410x(95)00156-u | DOI Listing |
Vet Med Sci
March 2025
Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan.
This case report highlights a potential vaccine safety concern associated with the Pseudorabies virus (PRV) live vaccine, which warrants further investigation for comprehensive understanding. Vaccine-induced immune thrombotic thrombocytopenia (VITT), a novel syndrome of adverse events following adenovirus vector COVID-19 vaccines, was observed after vaccination with Zoetis PR-VAC PLUS. This led to a 100% morbidity and high mortality among PRV-free Danish purebred pigs from Danish Genetics Co.
View Article and Find Full Text PDFVet Sci
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
(PCV2) is the main and primary causative agent of Postweaning Multisystemic Wasting Syndrome (PMWS). To date, immunoperoxidase monolayer assay (IPMA), indirect immunofluorescent assay (IFA), and enzyme linked immunosorbent assay (ELISA) are the most commonly diagnostic methods for detecting PCV2 antigens. However, these methods require specialized equipment and technical expertise and are suitable for laboratory use only.
View Article and Find Full Text PDFVet Sci
January 2025
Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
Diseases associated with porcine circovirus type 2 (PCV2) and pseudorabies virus (PRV) significantly affect the economy of pig farms, particularly when combined infections lead to bacterial co-infections. Antigens from the pseudorabies variant strain gB and gD proteins and PCV2 (genotyped) Cap protein were mixed with the pattern recognition receptor (PRR) agonist FLICd as adjuvants and formulated with a micro-hydrogel adjuvant into PCV2 and PRV bivalent subunit vaccines. Twenty pigs, aged 30-35 days, were divided into groups A (received bivalent subunit vaccine) and B (received bivalent subunit vaccines with recombinant FLICd adjuvant), as well as C (non-vaccinated challenge control) and D (blank control).
View Article and Find Full Text PDFVaccines (Basel)
January 2025
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
As an essential type of vaccine, live attenuated vaccines (LAVs) play a crucial role in animal disease prevention and control. Nevertheless, developing LAVs faces the challenge of balancing safety and efficacy. Understanding the mechanisms animal viruses use to antagonize host antiviral innate immunity may help to precisely regulate vaccine strains and maintain strong immunogenicity while reducing their pathogenicity.
View Article and Find Full Text PDFVirology
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China. Electronic address:
Pseudorabies virus (Pseudorabiesvirus, PRV) has caused huge economic losses to the global pig industry. In recent years, it has been reported that there are PRV mutants, but the traditional vaccine can not completely prevent or control the infection of PRV, so there is an urgent need to develop new broad-spectrum anti-disease drugs for prevention and treatment. PNGase F from bacteria can catalyze the hydrolysis of oligosaccharides linked to asparagine residues on peptides, so we speculate that PNGase F can inhibit virus infection by removing the glycosylation of virus membrane glycoproteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!