Ductal tips approximately 300 microM in length from adult rat dorsal (DP), lateral type 1 (L1), and lateral type 2 (L2) prostates were combined with mesenchyme from the embryonic urogenital sinus (UGM), neonatal seminal vesicle (SVM), or neonatal bulbourethral gland (BUGM) and grafted underneath the renal capsule of syngeneic male hosts. Following 1 month of in vivo growth, all tissue recombinants formed large masses of prostatic ductal tissue, which represented massive growth of the original population of prostatic epithelial cells. Examination of secretory protein expression in these tissue recombinants indicated that each mesenchyme influenced secretory function in the adult prostatic epithelium in a characteristic way. SVM maintained expression of DP-1 and probasin in prostatic ducts of DP, L1, and L2, which normally express these proteins. BUGM induced expression of C3 in prostatic ducts of the DP, L1, and L2, which normally do not express C3. UGM induced the expression of DP-1, probasin, and C3 in prostatic ducts from all dorsal-lateral lobes. Mesenchymal induction of massive epithelial growth, new ductal branching morphogenesis, and change in prostatic lobe identity are indicative of the presence of stem cells in adult prostatic epithelium because high proliferative capacity, tissue regeneration, and pluripotency (change in functional differentiation) are hallmarks of stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1097-0045(199608)29:2<107::AID-PROS6>3.0.CO;2-CDOI Listing

Publication Analysis

Top Keywords

stem cells
12
adult prostatic
12
prostatic epithelium
12
prostatic ducts
12
prostatic
9
cells adult
8
lateral type
8
tissue recombinants
8
expression dp-1
8
dp-1 probasin
8

Similar Publications

The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs).

View Article and Find Full Text PDF

Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment.

View Article and Find Full Text PDF

Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.

View Article and Find Full Text PDF

Remodeling the Proinflammatory Microenvironment in Osteoarthritis through Interleukin-1 Beta Tailored Exosome Cargo for Inflammatory Regulation and Cartilage Regeneration.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.

Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.

View Article and Find Full Text PDF

To investigate the effect of concentrated growth factor (CGF) on the biological performance of human dental pulp stem cells (hDPSCs) under oxidative stress status induced by hydrogen peroxide (HO). The hDPSCs were isolated by using tissue block separation method from healthy permanent teeth extracted for orthodontic reason. hDPSCs surface markers CD34, CD45, CD90 and CD105 were detected by flow cytometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!