This study describes the effects of litter size and acute suckling on the synthesis and release of hypothalamic TRH, as indirectly estimated by determination of hypothalamic prothyrotrophin-releasing hormone (proTRH) mRNA and median eminence TRH content. The effects of litter size (five or ten pups) were studied throughout lactation, while suckling-induced acute changes were analyzed on day 13 of lactation in dams with ten pups. In view of the enhanced adrenal activity during lactation and recent evidence that corticosteroids have negative effects on hypothalamic TRH, we also studied adrenalectomized (ADX) dams treated with corticosterone to maintain basal plasma corticosterone levels. In addition to an increased plasma level of prolactin (PRL), adrenal weight and plasma corticosterone increased, while plasma TSH, tri-iodothyronine (T3), thyroxine (T4) and free T4 (FT4) levels decreased during lactation. Litter size correlated positively with plasma PRL, adrenal weight and plasma corticosterone. No effect of litter size was observed on plasma T3, but rats with ten pups had lower plasma TSH, T4 and FT4 than rats with a five-pup litter. Compared with dioestrous rats, lactating rats showed an increased hypothalamic proTRH mRNA content on day 2, but not on days 8 and 15 of lactation. Median eminence TRH in lactating rats gradually increased until day 15 and decreased thereafter. Acute suckling, after a 6-h separation of mother and pups, rapidly increased plasma PRL and corticosterone in the mothers, but had no effects on plasma TSH and thyroid hormone levels. Hypothalamic proTRH mRNA increased twofold after 0.5 h of suckling, and then gradually returned to presuckling values after 6 h. Compared with sham-operated rats, corticosterone-substituted ADX rats with ten pups had increased plasma PRL and TSH, hypothalamic proTRH mRNA and pituitary TSH beta mRNA on day 15 of lactation. Moreover, while acute suckling did not enhance TSH release in sham-operated rats, it provoked not only PRL but also TSH release in corticosterone-substituted ADX dams. It is concluded that suckling exerts a rapid, positive effect on hypothalamic proTRH mRNA content. However, the concurrent enhanced adrenal activity has negative effects on hypothalamic proTRH gene expression resulting in a suppressed hypophysial-thyroid axis during lactation. While TRH appears to play a role in PRL release during the first days of lactation and during acute suckling, TRH seems not important in maintaining PRL secretion during continued suckling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1677/joe.0.1480325 | DOI Listing |
Neurotoxicology
December 2023
Department of Pharmacobiology, Center for Research and Advanced Studies (Cinvestav), Calzada de los Tenorios 235, Tlalpan, CP 14330 Mexico City, Mexico.
Misused volatile solvents typically contain toluene (TOL) as the main psychoactive ingredient. Cyclohexane (CHX) can also be present and is considered a safer alternative. Solvent misuse often occurs at early stages of life, leading to permanent neurobehavioral impairment and growth retardation.
View Article and Find Full Text PDFEndocrinology
January 2023
School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India.
In contrast to mammals, birds have a higher basal metabolic rate and undertake wide range of energy-demanding activities. As a consequence, food deprivation for birds, even for a short period, poses major energy challenge. The energy-regulating hypothalamic homeostatic mechanisms, although extensively studied in mammals, are far from clear in the case of birds.
View Article and Find Full Text PDFNeurosci Lett
November 2020
Molecular Neurophysiology Laboratory, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco No. 101. San Lorenzo Huipulco, CDMX 14370. Mexico. Electronic address:
Feeding-regulatory peptides such as thyrotropin-releasing hormone (TRH), α-melanocyte-stimulating hormone (α-MSH) and their receptors are expressed in brain regions involved in the homeostatic and hedonic control of food intake, such as the hypothalamus and the mesolimbic system, respectively. The nucleus accumbens (NAc) is part of the latter, a brain circuit involved in processing reward stimuli and the appetitive motivation of feeding. When TRH or α-MSH are administered in the NAc, both decrease food intake, through activating their respective receptors, TRH-R1 and MC4R.
View Article and Find Full Text PDFJ Comp Neurol
April 2019
School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, India.
Thyrotropin-releasing hormone (TRH) regulates the hypothalamic-pituitary-thyroid axis in mammals and also regulates prolactin secretion, directly or indirectly via tuberoinfundibular dopamine neurons. Although TRH is abundantly expressed in teleost brain and believed to mediate neuronal communication, empirical evidence is lacking. We analyzed pro-TRH-mRNA expression, mapped TRH-immunoreactive elements in the brain and pituitary, and explored its role in regulation of hypophysiotropic dopamine (DA) neurons in the catfish, Clarias batrachus.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2018
Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!