Purpose: To determine whether magnetization transfer imaging can improve visibility of contrast enhancement of multiple sclerosis plaques.
Methods: Fifty-nine enhancing and 63 nonenhancing lesions in 10 patients with multiple sclerosis were evaluated to calculate contrast-to-noise ratios on conventional T1-weighted and T1-weighted magnetization transfer images. The signal intensity of the lesion and the background (white matter) were measured on precontrast T1-weighted and T1-weighted magnetization transfer images (800/20/1 [repetition time/echo time/excitations]) and on postcontrast T1-weighted and T1-weighted magnetization transfer images. Mean contrast-to-noise ratios was calculated for all lesions.
Results: The contrast-to-noise ratio was significantly higher for enhancing and nonenhancing lesions on T1-weighted magnetization transfer images than on conventional T1-weighted images. For enhancing lesions, the contrast-to-noise ratio was significantly higher on postcontrast T1-weighted magnetization transfer images, 32 +/- 2 compared with 21 +/- 2 on conventional T1-weighted images. Fifty of the 59 enhancing lesions were seen on both the T1-weighted and the T1-weighted magnetization transfer images. Nine enhancing lesions were seen only on the postcontrast T1-weighted magnetization transfer images. In addition, of 63 nonenhancing lesions seen on proton-density, T2-weighted, and T1-weighted magnetization transfer images, 16 were not seen on the conventional T1-weighted images. Seven of the 63 nonenhancing lesions and 7 of the 59 enhancing lesions had high signal intensity on the precontrast T1-weighted magnetization transfer images suggestive of lipid signal, a finding not seen on the conventional precontrast T1-weighted images.
Conclusion: Magnetization transfer improves the visibility of enhancing multiple sclerosis lesions, because they have a higher contrast-to-noise ratio than conventional postcontrast T1-weighted images. High signal intensity on both nonenhancing and enhancing lesions noted only on precontrast T1-weighted magnetization transfer suggests a lipid signal was unmasked. If magnetization transfer is used in multiple sclerosis patients, a precontrast magnetization transfer image is necessary.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8338214 | PMC |
ACS Sens
January 2025
College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
Circular RNAs (circRNAs), as a class of noncoding RNA molecules with a circular structure exhibit high stability and spatiotemporal-specific expression, making them ideal cancer biomarkers for liquid biopsy. Herein, a new photoelectrochemical (PEC) biosensor for a highly sensitive circRNA assay in the whole blood of lung cancer patients was designed based on CRISPR/Cas13a-programmed Cu nanoclusters (Cu NCs) and a -scheme covalent organic framework/silver sulfide (T-COF/AgS) composite. This -scheme T-COF/AgS composite accelerates electron transfer and produces an excellent initial photocurrent.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Physiology & Medical Physics, RCSI University of Medicine & Health Sciences, Dublin D02 YN77, Ireland.
Post-traumatic epilepsy (PTE) is one of the most common life-quality reducing consequences of traumatic brain injury (TBI). However, to date there are no pharmacological approaches to predict or to prevent the development of PTE. The P2X7 receptor (P2X7R) is a cationic ATP-dependent membrane channel that is expressed throughout the brain.
View Article and Find Full Text PDFPan Afr Med J
January 2025
Department of Orthopedic Surgery, Habib Bourguiba University Hospital, Sfax, Tunisia.
This study aims to analyze the impact of muscle transfer on the glenohumeral joint in children with obstetric brachial plexus palsy (OBPP) using MRI by comparing preoperative and 5-year follow-up postoperative imaging findings to determine whether tendon transfers affect the alignment and configuration of the glenohumeral joint. Ten children with obstetric brachial plexus palsy (OBPP) participated in our prospective observational study, and we performed a tendon transfer technique. Every patient had an MRI of both shoulders done at preoperative and at the 5-year mark following the procedure.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke. In recent years, the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation. This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease.
View Article and Find Full Text PDFAdv Funct Mater
January 2025
Magnetic particle imaging (MPI) is an emerging modality that can address longstanding technological challenges encountered with magnetic particle hyperthermia (MPH) cancer therapy. MPI is a tracer technology compatible with MPH for which magnetic nanoparticles (MNPs) provide signal for MPI and heat for MPH. Identifying whether a specific MNP formulation is suitable for both modalities is essential for clinical implementation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!