Purpose: To determine the apparent bidirectional permeabilities of gabapentin (GBP) across the blood-brain barrier (BBB) using a novel microdialysis-pharmacokinetic approach.
Methods: Rats were administered intravenous infusions of [14C]GBP to achieve clinically relevant steady-state plasma concentrations. Microdialysis was used to monitor GBP concentration in brain extracellular fluid (ECF) in conscious animals. Brain tissue GBP concentration was measured at termination. The BBB influx (CL1) and efflux (CL2) permeabilities of GBP were estimated with a hybrid pharmacokinetic model assuming that transport between intra- and extracellular space was more rapid than transport across the BBB. The time course of GBP concentration in brain tissue was determined independently to validate the model assumption.
Results And Conclusions: Simulations of the concentration-time course of GBP in brain tissue based on this modeling correlated well with the time-course of brain tissue concentrations determined after intravenous bolus administration and validated this pharmacokinetic-microdialysis approach for estimation of BBB permeabilities. The values for CL1 and CL2 were 0.042 (0.017) and 0.36 (0.16) ml/min.g-brain, respectively, indicating that GBP was more efficiently transported from brain ECF to plasma. The total brain tissue concentration of GBP was significantly higher than the ECF concentration at steady-state due to intracellular accumulation and tissue binding, that if not considered, will lead to underestimated efflux BBB permeability using the tissue homogenate-pharmacokinetic approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1016092525901 | DOI Listing |
Exp Brain Res
January 2025
School of Rehabilitation Sciences, Université Laval, Quebec, Canada.
Navigating public environments requires adjustments to one's walking patterns to avoid stationary and moving obstacles. It is known that physical inactivity induces alterations in motor capacities, but the impact of inactivity on anticipatory locomotor adjustments (ALA) has not been studied. The purpose of the present exploratory study was to compare ALAs and related muscle co-contraction during a pedestrian circumvention task between active (AA) and inactive young adults (IA).
View Article and Find Full Text PDFJ Mol Evol
January 2025
Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.
Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.
View Article and Find Full Text PDFJ Neurochem
January 2025
Center for Protein Diagnostics (PRODI) Biospectroscopy, Ruhr University Bochum, Bochum, Germany.
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.
View Article and Find Full Text PDFJ Neurochem
January 2025
Core Facility Small Animal MRI, Ulm University, Ulm, Germany.
Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!