A series of four structurally related carbocyclic nucleosides (6a, 6b, 10a, and 10b) were synthesized and evaluated for their ability to inhibit tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and interleukin-6 (IL-6) production from human primary macrophages. These compounds had little effect on the production of IL-1 beta and IL-6. It was determined that compound 10a was the most potent inhibitor of TNF-alpha production (IC50 = 10 microM), having 2-5-fold more activity compared to its enantiomer 10b or its diastereomers 6a and 6b. In addition, these compounds were also tested for their ability to protect mice against lethal challenges of lipopolysaccharide (LPS) and D-galactosamine (D-Gal). Compound 10a showed superior protective effects (100% protection) compared to its enantiomer 10b or its diastereomers 6a and 6b when it was administered to mice which were challenged with 3 times the LD100 dose of LPS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm950906tDOI Listing

Publication Analysis

Top Keywords

carbocyclic nucleosides
8
tumor necrosis
8
necrosis factor-alpha
8
il-1 beta
8
compound 10a
8
compared enantiomer
8
enantiomer 10b
8
10b diastereomers
8
nucleosides inhibitors
4
inhibitors human
4

Similar Publications

Synthesis of Fluorinated Nucleosides/Nucleotides and Their Antiviral Properties.

Molecules

May 2024

Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA.

The FDA has approved several drugs based on the fluorinated nucleoside pharmacophore, and numerous drugs are currently in clinical trials. Fluorine-containing nucleos(t)ides offer significant antiviral and anticancer activity. The insertion of a fluorine atom, either in the base or sugar of nucleos(t)ides, alters its electronic and steric parameters and transforms the lipophilicity, pharmacodynamic, and pharmacokinetic properties of these moieties.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a chronic metabolic disorder marked by high blood glucose levels, impairing glucose production in the body. Its prevalence has steadily risen over the past decades, leading to compromised immunity and heightened susceptibility to microbial infections. Immune dysfunction associated with diabetes raises vulnerability, while neuropathy dulls sensation in the extremities, reducing injury awareness.

View Article and Find Full Text PDF

(Re)emerging RNA viruses have been major threats to public health in the past years, and from the few drugs available, nucleoside analogues are still at the cornerstone of the antiviral therapy. Among them, the synthesis of carbocyclic -nucleosides is suffering from long syntheses and poor yields. Herein we report a concise stereoselective synthesis of rare carbocyclic -nucleosides (11a-l) bearing non-canonical nucleobases through a cobalt-assisted-route as key step starting from the optically pure (-)-cyclopentenone 1.

View Article and Find Full Text PDF

Reversal of Enantioselectivity for the Desymmetrization of -1,2-Diols Catalyzed by Pyridine--oxides.

J Org Chem

October 2023

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

The desymmetrization of --diols with a reversal of enantioselectivity catalyzed by chiral pyridine--oxides with l-proline as a single source of chirality is reported. With chiral 3-substituted ArPNO and 2-substituted 4-(dimethylamino)pyridine--oxide as catalysts, a wide range of monoesters were obtained with satisfactory results with a complete and controlled switch in stereoselectivity (up to 97:3 and 1:99 er). Chiral six-membered carbocyclic uracil nucleosides were generated with excellent enantioselectivities after derivatization.

View Article and Find Full Text PDF

Purine containing carbonucleoside phosphonate analogues as novel chemotype for Plasmodium falciparum Inhibition.

Eur J Med Chem

October 2023

IBMM, Univ Montpellier, CNRS, ENSCM, Pôle Chimie Balard Recherche, 1919, Route de Mende, 34293, Montpellier, France. Electronic address:

The nucleotidase ISN1 is a potential therapeutic target of the purine salvage pathway of the malaria parasite Plasmodium falciparum. We identified PfISN1 ligands by in silico screening of a small library of nucleos(t)ide analogues and by thermal shift assays. Starting from a racemic cyclopentyl carbocyclic phosphonate scaffold, we explored the diversity on the nucleobase moiety and also proposed a convenient synthetic pathway to access the pure enantiomers of our initial hit (compound (±)-2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!