If we include beta-lactam antibiotics on the grounds that they have the same biosynthetic origin, peptides remain commercially the most important group of pharmaceuticals. However, our increasing knowledge of the genetic and enzymic background to biosynthesis, and of the regulation of metabolite production, will eventually bring a more unified approach to bioactive compounds. Mixing of structural types will become important, and we will be able to use our knowledge of biosynthetic genes and their regulatory networks. We will also benefit from an appreciation of the modular organization of catalytic functions, substrate transfer mechanisms and signalling between interacting enzymes. Since all of this is, in fact, the basis for enzymic synthesis of complex natural products in vivo, the exploitation of living cells requires mastery of a formidable network of cellular controls and compartments. For the present we are able to see fascinating connections emerging between genes in a variety of reaction sequences, not only in biosynthetic but also in degradative pathways. Peptide synthetases show surprising similarities to acylcoenzyme A synthetases, which are key enzymes in forming polyketides as well as in generating the CoA-derivatives that serve as substrates in degradative pathways. 4'-Phosphopantetheine, the functional half of CoA, plays a key role as the intrinsic transfer cofactor in various multienzyme systems. The comparatively small catalogue of reactions modifying natural products, notably epimerization, methylation, hydroxylation, decarboxylation (of peptides) and reduction/dehydration (of polyketides) can be found within or amongst biosynthetic proteins, generally as modules and organized in a specified order. The biochemist is coming close to the synthetic chemist's recipes, and may soon be recruiting proteins to carry them out.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/b978-0-7506-9095-9.50012-5 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India.
In recent decades, freshwater bodies have experienced significant stress due to the excessive disposal of dyes from textile industries and waste antibiotic discharges from pharmaceutical industries. The continuous disposal of these substances may harm the natural ecosystem and generate antibiotic resistance in living organisms. Conventional treatment facilities are inadequate in treating these contaminants effectively, leading to a focused interest in advanced technologies, such as electrooxidation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, Kohsar University Murree, Murree, 47150, Punjab, Pakistan.
Antibiotics and pharmaceuticals exert significant environmental risks to aquatic ecosystems and human health. Many effective remedies to this problem have been developed through research. Metal-organic frameworks (MOFs) are potential constituents, for drug and antibiotic removal.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Fytagoras BV, Leiden, The Netherlands.
The nematode Caenorhabditis elegans, widely recognized as a model organism due to its ease of breeding and well-characterized genomes, boasts complete digestive, reproductive, and endocrine systems, as well as conserved signaling pathways shared with mammals. It has become an invaluable resource for metabolomics research, particularly in examining responses to chemical or environmental factors and toxicity assessments. In this article, we provide detailed, step-by-step protocols for cultivating C.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
Known for their diverse and potent physiological activities, natural products continue to be essential for the discovery and development of new drugs. This chapter explores the pivotal role of preparative thin-layer chromatography (Prep-TLC) in the isolation of natural products. This chapter begins with an understanding of the historical significance and structural complexity of natural products, and discusses the problems caused by complex mixtures present in extracts, as well as the multifunctionality, cost-effectiveness, and compatibility with different sample types of Prep-TLC to address these challenges.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Environmental and Biochemical Sciences, James Hutton Institute, Dundee, Scotland, UK.
Profiling of secondary metabolites within Fragaria sp. (strawberry), Rubus sp. (raspberries and blackberries), and Ribes sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!