Inactivation of YME1 in yeast causes several distinct phenotypes: an increased rate of DNA escape from mitochondria, temperature-sensitive growth on nonfermentable carbon sources, extremely slow growth when mitochondrial DNA is completely absent from the cell, and altered morphology of the mitochondrial compartment. The protein encoded by YME1, Yme1p, contains two highly conserved sequence elements, one implicated in the binding and hydrolysis of ATP, and the second characteristic of active site residues found in neutral, zinc-dependent proteases. Both the putative ATPase and zinc-dependent protease elements are necessary for the function of Yme1p as genes having mutations in critical residues of either of these motifs are unable to suppress any of the phenotypes exhibited by yme1 deletion strains. Yme1p co-fractionates with proteins associated with the mitochondrial inner membrane, is tightly associated with this membrane, and is oriented with the bulk of the protein facing the matrix. Unassembled subunit II of cytochrome oxidase is stabilized in yme1 yeast strains. The data support a model in which Yme1p is an ATP and zinc-dependent protease associated with the matrix side of the inner mitochondrial membrane. Subunit II of cytochrome oxidase, when not assembled into a higher order complex, is a likely substrate of Yme1p.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC275881PMC
http://dx.doi.org/10.1091/mbc.7.2.307DOI Listing

Publication Analysis

Top Keywords

atp zinc-dependent
8
yme1 yeast
8
zinc-dependent protease
8
subunit cytochrome
8
cytochrome oxidase
8
yme1
5
mitochondrial
5
yme1p
5
biochemical functional
4
functional analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!