Tyrosyl phosphorylation plays an important regulatory role in osteoclast formation and activity. Phosphotyrosyl phosphatases (PTPs), in addition to tyrosyl kinases, are key determinants of intracellular tyrosyl phosphorylation levels. To identify the PTP that might play an important regulatory role in osteoclasts, we sought to clone an osteoclast-specific PTP. A putative full-length clone encoding a unique PTP (referred to as PTP-oc) was isolated from a 10-day-old rabbit osteoclastic cDNA library and sequenced. A single open reading frame predicts a protein with 405 amino acid residues containing a putative extracellular domain, a single transmembrane region, and an intracellular portion. PTP-oc is structurally unique in that, unlike most known transmembrane PTPs, it has a short extracellular region (eight residues), lacks a signal peptide proximal to the N-terminus, and contains only a single 'PTP catalytic domain'. The PTP catalytic domain shows 45-50% sequence identity with the catalytic domain of human HPTP beta and with the first catalytic domain of LCA. The PTP-oc gene exists as a single copy in the rabbit genome. The corresponding mRNA (3.8 kb) is expressed in osteoclasts but not in other bone-derived cells (e.g. osteoblasts and stromal cells). The 3.8 kb PTP-oc mRNA transcript was also expressed in the rabbit brain, kidney and spleen. However, the brain and kidney, but not osteoclasts or spleen, also expressed a larger transcript (6.5 kb). The PTP catalytic domain of PTP-oc was expressed as a GST-cPTP-oc fusion protein. In vitro phosphatase assays indicated that the purified fusion protein exhibited phosphatase activities at neutral pH values toward p-nitrophenyl phosphate, phosphotyrosyl Raytide, and phosphotyrosyl histone, whereas it had no appreciable activity toward phosphoseryl casein. In summary, we have: (a) cloned and sequenced the putative full-length cDNA of a unique PTP (PTP-oc) from rabbit osteoclasts; (b) shown that the mature 3.8 kb PTP-oc mRNA was expressed primarily in osteoclasts and the spleen; and (c) shown that the PTP-oc fusion protein exhibited a phosphotyrosine-specific phosphatase activity. In conclusion, PTP-oc represents a structurally unique subfamily of transmembrane PTPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1217379PMC
http://dx.doi.org/10.1042/bj3160515DOI Listing

Publication Analysis

Top Keywords

catalytic domain
16
fusion protein
12
ptp-oc
9
rabbit osteoclastic
8
tyrosyl phosphorylation
8
regulatory role
8
putative full-length
8
unique ptp
8
structurally unique
8
transmembrane ptps
8

Similar Publications

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

Mitral Valve Prolapse Caused by TLL1 Gain-of-Function Mutation.

Can J Cardiol

January 2025

The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel; Genetics Institute, Soroka University Medical Center, Be'er Sheva, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel. Electronic address:

Background: Mitral valve prolapse (MVP) is a common cardiac valvular anomaly that can be caused by mutations in genes of various biological pathways. Individuals of three generations of a kindred presented with apparently dominant heredity of isolated MVP.

Methods: Clinical evaluation and echocardiography for all complying family members (n=13).

View Article and Find Full Text PDF

The SUMO fusion technology has immensely contributed to the soluble production of therapeutics and other recombinant proteins in E. coli. The structure-based functionality of SUMO protease has remained the primary determinant for choosing SUMO as a solubility enhancer tag.

View Article and Find Full Text PDF

S-adenosylmethionine (SAM)-dependent histamine N-methyltransferase (HNMT) is a crucial enzyme involved in histamine methylation, playing an important role in the epigenetic modification of biology. It entails the addition of methyl groups to histamine molecules, thereby regulating gene expression, cellular signal transduction, and other biological processes. Therefore, gaining a profound understanding of the detailed mechanism underlying HNMT-mediated methylation reactions is instrumental in elucidating the role of histamine methylation in biology.

View Article and Find Full Text PDF

Noncanonical inhibition of topoisomerase II alpha by oxidative stress metabolites.

Redox Biol

January 2025

University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA. Electronic address:

During its catalytic cycle, the homodimeric ATPase topoisomerase II alpha (TOP2A) cleaves double stranded DNA and remains covalently bound to 5' ends via tyrosine phosphodiester bonds. After passing a second, intact duplex through, TOP2A rejoins the break and releases from the DNA. Thereby, TOP2A can relieve strain accumulated during transcription, replication and chromatin remodeling and disentangle sister chromatids for mitosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!