The morphogenesis of elastic fibers.

Adv Exp Med Biol

Published: July 1977

Elastic fibers have been shown to contain two proteins, insoluble elastin and the elastic fiber microfibril, a glycoprotein. The microfibril has been suggested to play a morphogenetic role in determining the presumptive shape and direction of the forming elastic fiber. The principal alteration seen in individuals with the disease Pseudoxanthoma Elasticum is in insoluble elastin which loses its amorphous appearance and affinity for anionic stains, and takes on a finely granular appearance and shows increased affinity for cationic stains. Normal elastic fiber microfibrils are sometimes associated with this material; although, in general, these structures are not present in the elastic fibers that are markedly altered in this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4684-9093-0_2DOI Listing

Publication Analysis

Top Keywords

elastic fibers
12
elastic fiber
12
insoluble elastin
8
elastic
5
morphogenesis elastic
4
fibers elastic
4
fibers proteins
4
proteins insoluble
4
elastin elastic
4
fiber microfibril
4

Similar Publications

Unlabelled: was to investigate the potential of direct mechanical testing methods in clinical practice to assess the strength and elastic-deformative characteristics of intraoperative samples of aortic arch aneurysm caused by uncontrolled arterial hypertension.

Materials And Methods: The study experimental material was the resected parts of the aortic aneurysm obtained during aneurysm replacement surgery in a patient with uncontrolled arterial hypertension. The direct mechanical testing methods such as instrumental indentation and uniaxial extension were used.

View Article and Find Full Text PDF

A functional cardiac patch promotes cardiac repair by modulating the CCR2 cardiac-resident macrophage niche and their cell crosstalk.

Cell Rep Med

January 2025

Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China. Electronic address:

C-C chemokine receptor type 2 (CCR2) cardiac-resident macrophages (CCR2 cRMs) are known to promote cardiac repair after myocardial infarction (MI). However, the substantial depletion and slow recovery of CCR2 cRMs pose significant barriers in cardiac recovery. Here, we construct a functional conductive cardiac patch (CCP) that can provide exogenously elastic conductive microenvironment and induce endogenously reparative microenvironment mediated by CCR2 cRMs for MI repair.

View Article and Find Full Text PDF

Generic Elasticity of Thermal, Underconstrained Systems.

Phys Rev Lett

December 2024

CPT, CNRS, Aix Marseille Univ, Université de Toulon, (UMR 7332), Turing Center for Living Systems, Marseille, France.

Athermal (i.e., zero-temperature) underconstrained systems are typically floppy, but they can be rigidified by the application of external strain, which is theoretically well understood.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

The human body consists of many different soft biological tissues that exhibit diverse microstructures and functions and experience diverse loading conditions. Yet, under many conditions, the mechanical behaviour of these tissues can be described well with similar nonlinearly elastic or inelastic constitutive relations, both in health and some diseases. Such constitutive relations are essential for performing nonlinear stress analyses, which in turn are critical for understanding physiology, pathophysiology and even clinical interventions, including surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!