cDNA clones for the catalytic subunit of Ca2+/calmodulin(CaM)-dependent protein phosphatase (calcineurin A, protein phosphatase 2B) from Dictyostelium discoideum were isolated by functional screening of a lambda gt11 lysogen expression library with labeled Dictyostelium CaM. A complete cDNA of 2146 bp predicts a protein of 623 amino acids with homology to calcineurin A from other organisms and a similar molecular architecture. However, the Dictyostelium protein contains N-terminal and C-terminal extra domains causing a significantly higher molecular mass than found in any of its known counterparts. Recombinant Dictyostelium calcineurin A was purified from Escherichia coli cells and shown to display similar enzymatic properties as the enzyme from other sources. On Western blots specific antibodies against the protein recognized a band of approximately 80 kDa that migrated with an endogenous CaM-binding activity. Both the mRNA for calcineurin A and the protein are expressed during the growth phase. During early development the abundance of the protein is reduced and then increases to peak after 10 h of starvation, when tight aggregates have formed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1996.0391z.xDOI Listing

Publication Analysis

Top Keywords

dictyostelium calcineurin
8
protein phosphatase
8
calcineurin protein
8
protein
7
dictyostelium
5
calcineurin
5
primary structure
4
structure expression
4
expression developmental
4
developmental regulation
4

Similar Publications

Calmodulin (CaM) is an essential calcium-binding protein within eukaryotes. CaM binds to calmodulin-binding proteins (CaMBPs) and influences a variety of cellular and developmental processes. In this study, we used immunoprecipitation coupled with mass spectrometry (LC-MS/MS) to reveal over 500 putative CaM interactors in the model organism .

View Article and Find Full Text PDF

Calcineurin Silencing in Dictyostelium discoideum Leads to Cellular Alterations Affecting Mitochondria, Gene Expression, and Oxidative Stress Response.

Protist

August 2018

Institute for Biology - Microbiology, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany. Electronic address:

Calcineurin is involved in development and cell differentiation of the social amoeba Dictyostelium discoideum. However, since knockouts of the calcineurin-encoding genes are not possible in D. discoideum it is assumed that the phosphatase also plays a crucial role during vegetative growth of the amoebae.

View Article and Find Full Text PDF

Evolutionary Cell Biology of Proteins from Protists to Humans and Plants.

J Eukaryot Microbiol

March 2018

Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany.

During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models.

View Article and Find Full Text PDF

The causative agent of Legionnaires' disease, Legionella pneumophila, grows in environmental amoebae and mammalian macrophages within a distinct compartment, the 'Legionella-containing vacuole' (LCV). Intracellular bacteria are protected from many antibiotics, and thus are notoriously difficult to eradicate. To identify novel compounds that restrict intracellular bacterial replication, we previously developed an assay based on a coculture of amoebae and GFP-producing L.

View Article and Find Full Text PDF

Differentiation-inducing factor-1 (DIF-1) is a polyketide that induces Dictyostelium amoebae to differentiate as prestalk cells. We performed a global quantitative screen for phosphorylation changes that occur within the first minutes after addition of DIF-1, using a triple-label SILAC approach. This revealed a new world of DIF-1-controlled signaling, with changes in components of the MAPK and protein kinase B signaling pathways, components of the actinomyosin cytoskeletal signaling networks, and a broad range of small GTPases and their regulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!