Myxoma virus is a pathogenic poxvirus that induces a lethal myxomatosis disease profile in European rabbits, which is characterized by fulminating lesions at the primary site of inoculation, rapid dissemination to secondary internal organs and peripheral external sites, and supervening gram-negative bacterial infection. Here we describe the role of a novel myxoma virus protein encoded by the M-T5 open reading frame during pathogenesis. The myxoma virus M-T5 protein possesses no significant sequence homology to nonviral proteins but is a member of a larger poxviral superfamily designated host range proteins. An M-T5- mutant virus was constructed by disruption of both copies of the M-T5 gene followed by insertion of the selectable marker p7.5Ecogpt. Although the M-T5- deletion mutant replicated with wild-type kinetics in rabbit fibroblasts, infection of a rabbit CD4+ T-cell line (RL5) with the myxoma virus M-T5- mutant virus resulted in the rapid and complete cessation of both host and viral protein synthesis, accompanied by the manifestation of all the classical features of programmed cell death. Infection of primary rabbit peripheral mononuclear cells with the myxoma virus M-T5-mutant virus resulted in the apoptotic death of nonadherent lymphocytes but not adherent monocytes. Within the European rabbit, disruption of the M-T5 open reading frame caused a dramatic attenuation of the rapidly lethal myxomatosis infection, and none of the infected rabbits displayed any of the characteristic features of myxomatosis. The two most significant histological observations in rabbits infected with the M-T5-mutant virus were (i) the lack of progression of the infection past the primary site of inoculation, coupled with the establishment of a rapid and effective inflammatory reaction, and (ii) the inability of the virus to initiate a cellular reaction within secondary immune organs. We conclude that M-T5 functions as a critical virulence factor by allowing productive infection of immune cells such as peripheral lymphocytes, thus facilitating virus dissemination to secondary tissue sites via the lymphatic channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC190373 | PMC |
http://dx.doi.org/10.1128/JVI.70.7.4394-4410.1996 | DOI Listing |
J Med Virol
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
Oncolytic viruses are emerging as promising cancer therapeutic agents, with several poxviruses, including vaccinia virus (VACV) and myxoma virus, showing significant potential in preclinical and clinical trials. Modified vaccinia virus Ankara (MVA), a laboratory-derived VACV strain approved by the FDA for mpox and smallpox vaccination, has been shown to be incapable of replicating in human cells unless zinc finger antiviral protein (ZAP) is repressed. Notably, ZAP deficiency is prevalent in various cancer types.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
Oncolytic viruses (OVs) have emerged as a class of novel cancer immunotherapeutic. Members of both DNA and RNA viruses developed as OVs for treating diverse types of human cancers. Preclinical research assessing immunotherapeutic efficacy is an essential step toward further development of these OVs.
View Article and Find Full Text PDFPrev Vet Med
January 2025
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão 4485-661, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal; Estação Biológica de Mértola (EBM), CIBIO, Praça Luís de Camões, Mértola 7750-329, Portugal. Electronic address:
Int J Mol Sci
October 2024
Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże AK 15, 44-102 Gliwice, Poland.
Treatment of glioblastoma is ineffective. Myx-M011L-KO/EGFP, a myxoma virus actively inducing apoptosis in BTICs linked to recurrence, offers innovative treatment. We loaded this construct into adipose-derived stem cells (ADSCs) to mitigate antiviral host responses and enable systemic delivery.
View Article and Find Full Text PDFMol Ther Oncol
September 2024
Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
Cytokine therapy represents an attractive option to improve the outcomes of cancer patients. However, the systemic delivery of these agents often leads to severe immune-related toxicities, which can prevent their efficient clinical use. One approach to address this issue is the use of recombinant oncolytic viruses to deliver various cytokines directly to the tumor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!