Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice.

J Clin Invest

Department of Internal Medicine (Division of Pulmonary and Critical Medicine), University of Michigan Medical School, Ann Arbor 48109, USA.

Published: June 1996

The salient feature of solid tumor growth is the strict dependence on local angiogenesis. We have previously demonstrated that IL-8 is an angiogenic factor present in freshly isolated specimens of human non-small cell lung cancer (NSCLC). Using a model of human NSCLC tumorigenesis in SCID mice, we now report that IL-8 acts as a promoter of human NSCLC tumor growth through its angiogenic properties. Passive immunization with neutralizing antibodies to IL-8 resulted in more than 40% reduction in tumor size and was associated with a decline in tumor-associated vascular density and angiogenic activity. IL-8 did not act as an autocrine growth factor for NSCLC proliferation. The reduction in primary tumor size in response to neutralizing antibodies to IL-8 was also accompanied by a trend toward a decrease in spontaneous metastasis to the lung. These data support the notion that IL-8 plays a significant role in mediating angiogenic activity during tumorigenesis of human NSCLC, thereby offering a potential target for immunotherapy against solid tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC507372PMC
http://dx.doi.org/10.1172/JCI118734DOI Listing

Publication Analysis

Top Keywords

human nsclc
12
tumorigenesis human
8
human non-small
8
non-small cell
8
cell lung
8
lung cancer
8
scid mice
8
tumor growth
8
neutralizing antibodies
8
antibodies il-8
8

Similar Publications

Dipeptidase 1 (DPEP1), initially identified as a renal membrane enzyme in mature human kidneys, plays a pivotal role in various cellular processes. It facilitates the exchange of materials and signal transduction across cell membranes, contributing significantly to dipeptide hydrolysis, glucose and lipid metabolism, immune inflammation, and ferroptosis, among other cellular functions. Extensive research has delineated the complex role of DPEP1 in oncogenesis and tumor progression, with its influence being context dependent.

View Article and Find Full Text PDF

Alpha-Lipoic Acid-Mediated Inhibition of LTB Synthesis Suppresses Epithelial-Mesenchymal Transition, Modulating Functional and Tumorigenic Capacities in Non-Small Cell Lung Cancer A549 Cells.

Curr Ther Res Clin Exp

November 2024

Laboratorio de Oncología Celular y Molecular. Departamento de Oncología Básico-Clínica. Facultad de Medicina. Universidad de Chile, Santiago, Chile.

Background: Leukotriene B (LTB) plays a crucial role in carcinogenesis by inducing epithelial-mesenchymal transition (EMT), a process associated with tumor progression. The synthesis of LTB is mediated by leukotriene A hydrolase (LTAH), and it binds to the receptors BLT and BLT. Dysregulation in LTB production is linked to the development of various pathologies.

View Article and Find Full Text PDF

Background A minority of patients receiving stereotactic body radiation therapy (SBRT) for non-small cell lung cancer (NSCLC) are not good responders. Radiomic features can be used to generate predictive algorithms and biomarkers that can determine treatment outcomes and stratify patients to their therapeutic options. This study investigated and attempted to validate the radiomic and clinical features obtained from early-stage and oligometastatic NSCLC patients who underwent SBRT, to predict local response.

View Article and Find Full Text PDF

Background: Ensuring equal access to affordable, high-quality, and satisfied healthcare for cancer patients is a challenge worldwide. Our study aimed to investigate preferences for public health insurance coverage of new anticancer drugs among non-small cell lung cancer (NSCLC) patients in China.

Methods: We identified six attributes of new anticancer drugs and adopted a Bayesian-efficient design to generate choice scenarios for a discrete choice experiment (DCE).

View Article and Find Full Text PDF

Background: Primary pulmonary lymphoepithelial carcinoma (pLEC) is a subtype of non-small cell lung cancer (NSCLC) characterized by Epstein-Barr virus (EBV) infection. However, the molecular pathogenesis of pLEC remains poorly understood.

Methods: In this study, we explored pLEC using whole-exome sequencing (WES) and RNA-whole-transcriptome sequencing (RNA-seq) technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!