The glycosylation pathway is the most important post-translational modification of a protein and is moreover a highly specific process. The majority of proteins of pharmaceutical interest are glycoproteins. Therefore, it is necessary to identify the composition, the structure, the function and the biosynthesis of the glycoproteins. The present knowledge is described here. In addition, the performed studies about structure-function relationship of the glycoproteins have shown that the oligosaccharide part of a glycoprotein confers important and specific biological roles. Thus, the modification of the structure of the glycan chains can lead to a modification of the activity of the glycoprotein. This phenomenon is encountered at the time of the production of recombinant glycoprotein in a heterologous system. Indeed, the glycosylation profile of a protein is specific to both the host cell and the culture conditions of this cell. Thus, the advantages and the drawbacks of the different host cells used for the glycosylation engineering are presented. In this way, the identification of the different specific enzymes glycosyltransferases and glycosidases involved in the glycosylation pathway is now necessary to improve the production of recombinant glycoprotein. The structure and the characteristics of these enzymes, and more particularly the oligosaccharyltransferase and the galactosyltransferase, are also described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0168-1656(95)00174-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!