Tooth eruption activates a localized resorption and formation of alveolar bone and these activities depend upon the adjacent parts, coronal and basal, respectively, of the dental follicle-enamel epithelium. In this study the nuclear matrix-intermediate filament (NM-IF) proteins of these tissues were isolated in order to continue investigations into the molecular mechanisms underlying eruption. Dental follicles were removed from the third and fourth premolar of dogs at 13, 16 and 20 weeks (pre-, early, and mid-to-late eruption of these teeth) and NM-IF proteins were extracted from the coronal and basal halves. Most of the NM-IF protein profiles of these coronal and basal parts on one-dimensional, sodium dodecyl sulphate-polyacrylamide gel electrophoresis were remarkably constant, indicating an essentially uniform cellular composition. However, differences between these tissues were observed and some of these changed during eruption. Based on recent observations that nuclear matrix changes reflect and may even mediate cell-specific changes in gene expression, these findings suggest that changes in nuclear matrix proteins may be related to the molecular basis for some aspects of differential gene expression in the coronal and basal regions of the dental follicle and account for the ability of these tissues to activate bone resorption and formation during tooth eruption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0003-9969(95)00067-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!