Role of disassembly of microfilament bundles and suppression of high-molecular-weight tropomyosin (TM) expression in growth factor- and various oncogene-induced transformation was studied by using NRK cells and its transformation-deficient mutants. In NRK cells which show a transformed phenotype by treatment with EGF and TGF-beta, cellular stress fibers became dissociated by EGF or EGF and TGF-beta combination, whereas TGF-beta alone caused thicker appearance of stress fibers. Accompanying these changes, the expression of TM isoforms 1 and 2 was suppressed by treatment with EGF or EGF and TGF-beta, but elevated by TGF-beta with similar time courses. On the other hand, the transformation-deficient mutant cell lines, 39-1 and 39-3, did not show the transformed phenotypes by treatment with EGF and TGF-beta. Neither EGF nor EGF and TGF-beta combination affected cellular stress fibers and expression of TM isoforms 1 and 2 in both mutant lines. The relationship between the formation of stress fibers and the expression of TM isoforms was consistent in NRK cells, the mutant lines and their various oncogene-expressing sublines under various culture conditions. NRK cells overexpressing exogenous mouse TM isoform 2 showed markedly decreased susceptibility to EGF-induced dissociation of stress fibers and decreased anchorage-independent growth potential in the presence of EGF and TGF-beta. These results indicate that the transformation-deficient NRK mutant lines, 39-1 and 39-3 have defects in an EGF signal transduction pathway which induces suppression of high-molecular-weight TM expression and disassembly of microfilament bundles and suggested that the activation of the pathway is important for morphological transformation and oncogenic growth in growth factors- and various oncogene-induced transformation of NRK cells.
Download full-text PDF |
Source |
---|
Eur J Med Chem
January 2025
School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland. Electronic address:
The natural bioactive products myxin and iodinin are phenazine 5,10-dioxides possessing potent anti-bacterial and anti-cancer activity in vitro. This work describes the synthesis and derivatization of new myxin and iodinin regioisomers, developed from 1,3-dihydroxyphenazine 5,10-dioxide. Compounds were evaluated for activity towards M.
View Article and Find Full Text PDFIntroduction: 5-methoxytryptophan (5-MTP) is an anti-inflammatory metabolite. Several recent reports indicate that 5-MTP protects against post-injury tissue fibrosis. It was unclear how 5-MTP controls tissue fibrosis.
View Article and Find Full Text PDFCell Biol Int
January 2025
Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Teine-ku, Japan.
The transcription factor brain and muscle Arnt-like protein-1 (BMAL1) is a clock protein involved in various diseases, including atherosclerosis and cancer. However, BMAL1's involvement in kidney fibrosis and the underlying mechanisms remain largely unknown, a gap addressed in this study. Analysis through Masson's trichrome and Sirius red staining revealed that all groups exposed to unilateral ureteral obstruction showed increased BMAL1 protein expression accompanied by increased TGF-β1 expression and elevated key fibrosis markers, including α-SMA, compared with sham groups.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Background: The calcium-sensitive receptor (CaSR) has been identified as a key factor in the formation of kidney stones. A substantial body of research has illuminated the function of CaSR in stone formation with respect to oxidative stress, epithelial injury, crystal adhesion, and stone-associated proteins. Nevertheless, as a pivotal molecule in renal calcium excretion, its pathway that contributes to stone formation by regulating calcium supersaturation remains underexplored.
View Article and Find Full Text PDFRen Fail
December 2024
Department of Nephrology, Nantong Hospital to Nanjing University of Chinese Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, China.
Objective: This study was recruited to investigate the role of mitophagy in activating NLRP3 inflammasome in the kidney of uric acid (UA) nephropathy (UAN) rats.
Methods: This study developed a uric acid nephropathy (UAN) rat model divided into five groups: Negative control (NC), UAN model (M), UAN + autophagy inhibitor (3-MA), UAN + lysosome inhibitor (CQ), and ROS scavenger (N-acetylcysteine, N). H&E staining assessed renal structure, ROS levels were measured with 2, 7dichlorofluorescin diacetate, and ELISA measured serum markers (, , cystatin , , , ).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!