A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Use of neural networks in brain SPECT to diagnose Alzheimer's disease. | LitMetric

Unlabelled: The usefulness of artificial neural networks in the classification of 99mTc-HMPAO SPECT axial brain scans was investigated in a study group of Alzheimer's disease patients and age-matched normal subjects.

Methods: The cortical circumferential profiling (CCP) technique was used to extract information regarding patterns of cortical perfusion. Traditional analysis of the CCP data, taken from slices at the level of the basal ganglia, indicated significant perfusion deficits for Alzheimer's disease patients relative to normals, particularly in the left temporo-parietal and left posterior frontal areas of the cortex. The compressed profiles were then used to train a neural-network classifier, the performance of which was compared with that of a number of more traditional statistical (discriminant function) techniques and that of two expert viewers.

Results: The optimal classification performance of the neural network (ROC area = 0.91) was better than that of the alternative statistical techniques (max. ROC area = 0.85) and that of the expert viewers (max. ROC area = 0.79).

Conclusion: The CCP produces perfusion profiles which are well suited to automated classification methods, particularly those employing neural networks. The technique has the potential for wide application.

Download full-text PDF

Source

Publication Analysis

Top Keywords

neural networks
12
alzheimer's disease
12
roc area
12
disease patients
8
max roc
8
neural
4
networks brain
4
brain spect
4
spect diagnose
4
diagnose alzheimer's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!