In the present study, glutamate receptor agonists and antagonists were administered by retrograde microdialysis into either the medial septum/vertical limb of the diagonal band (MS/vDB), or hippocampus, and the output of acetylcholine (ACh) was measured in the hippocampus by using intracerebral microdialysis. Perfusion with N-methyl-D-aspartate (NMDA) and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the MS/vDB caused an incrase in ACh output in the hippocampus. This increase was completely blocked by coadministration of their respective antagonists D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Perfusion in the MS/vDB with kainic acid also caused an increase in ACh output, but coadministration of CNQX attenuated the increase only partially. Perfusion with D-AP5 and CNQX alone in the septal probe did not affect ACh output from the hippocampus. In contrast to the results of septal administration of NMDA and AMPA, local perfusion with the same drugs in the hippocampus caused a decrease in ACh output. Whereas the results of septal administration of drugs indicate that septal cholinergic neurons probably receive excitatory glutamatergic innervation, the decrease in ACh output caused by administration of NMDA and AMPA in the hippocampus is poorly understood.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1471-4159.1996.67010310.xDOI Listing

Publication Analysis

Top Keywords

ach output
20
output acetylcholine
8
output hippocampus
8
septal administration
8
administration nmda
8
nmda ampa
8
decrease ach
8
output
7
hippocampus
7
ach
6

Similar Publications

Ketone monoester ingestion improves cardiac function in adults with type 2 diabetes: a double-blind, placebo controlled, randomised, crossover trial.

J Appl Physiol (1985)

January 2025

Physical Activity, Health and Rehabilitation Thematic Research Group, School of Psychology, Sport & Health Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK.

Type 2 diabetes (T2D) is a metabolic disease associated with cardiovascular dysfunction. The myocardium preferentially uses ketones over free fatty acids as a more energy efficient substrate. The primary aim was to assess the effects of ketone monoester (K) ingestion on cardiac output index ().

View Article and Find Full Text PDF

The adrenal medulla is a key effector of the sympathetic nervous system in the periphery. Its primary function is to translate variations in sympathetic activity into hormone outputs that modify end organ function throughout the body. These hormones include epinephrine, norepinephrine, and a variety of vasoactive peptides.

View Article and Find Full Text PDF

The effect of repeated hot water immersion on vascular function, blood pressure and central haemodynamics in individuals with type 2 diabetes mellitus.

J Therm Biol

December 2024

School of Psychology, Sport and Health Science, Faculty of Science and Health, University of Portsmouth, UK; Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK. Electronic address:

Article Synopsis
  • Type 2 diabetes mellitus (T2DM) can lead to problems with blood vessel function, increasing the risk of heart issues, and hot water immersion (HWI) might help improve this, though research is limited.
  • A study with 14 participants assessed the effects of 8-10 sessions of HWI, measuring various heart and blood vessel functions before and after the treatment.
  • Results showed significant reductions in cardiac index, stroke volume index, resting heart rate, and systolic blood pressure, suggesting HWI could benefit heart-related measures in T2DM, but it didn’t improve overall vascular function.
View Article and Find Full Text PDF

Background: L-DOPA has been considered the first-line therapy for treating Parkinson's disease (PD) via restoring striatal dopamine (DA) to normalize the activity of local spiny projection neurons (SPNs) in the direct (dSPNs) pathway and the indirect (iSPNs) pathway. While the changes in striatal acetylcholine (ACh) induced by increasing DA have been extensively discussed, their validity remains controversial. Inhibition of striatal cholinergic signaling attenuates PD motor deficits.

View Article and Find Full Text PDF

The basolateral amygdala (BLA), a brain center of emotional expression, contributes to acoustic communication by first interpreting the meaning of social sounds in the context of the listener's internal state, then organizing the appropriate behavioral responses. We propose that modulatory neurochemicals such as acetylcholine (ACh) and dopamine (DA) provide internal-state signals to the BLA while an animal listens to social vocalizations. We tested this in a vocal playback experiment utilizing highly affective vocal sequences associated with either mating or restraint, then sampled and analyzed fluids within the BLA for a broad range of neurochemicals and observed behavioral responses of adult male and female mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!