Negative transactivation of cAMP response element by familial Alzheimer's mutants of APP.

EMBO J

Shriners Hospitals For Crippled Children, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA.

Published: May 1996

In familial Alzheimer's disease (FAD), missense point mutations V642I/F/G, which co-segregate with the disease phenotype, have been discovered in amyloid precursor APP695. Here, we report that three FAD mutants (FAD-APPs) negatively regulated the transcriptional activity of cAMP response element (CRE) by a G(o)-dependent mechanism, but expression of wildtype APP695 had no effect on CRE. Experiments with various Galpha(s) chimeras demonstrated that Phe-APP coupled selectively to the C-terminus of Galpha(0). Again, wild-type APP695 had no effect on its C-terminus. These data indicate that FAD-APPs are gain-of-function mutants of APP695 that negatively regulate the CRE activity through G(o). This negative transactivation of CRE is the first biochemically analyzed signal evoked by the three FAD-APPs, but not by wild-type APP695, in a whole-cell system. We discuss the significance of constitutive CRE suppression by FAD-APPs, which is potentially relevant to synaptic malplasticity or memory disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC450179PMC

Publication Analysis

Top Keywords

negative transactivation
8
camp response
8
response element
8
familial alzheimer's
8
wild-type app695
8
app695
5
cre
5
transactivation camp
4
element familial
4
alzheimer's mutants
4

Similar Publications

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Ankyloblepharon-Ectodermal Defects-Cleft Lip/Palate (AEC) syndrome is a rare genetic disorder caused by mutations in the TP63 gene, which encodes a transcription factor essential for epidermal gene expression. A key feature of AEC syndrome is chronic skin erosion, for which no effective treatment currently exists. Our previous studies demonstrated that mutations associated with AEC syndrome lead to p63 protein misfolding and aggregation, exerting a dominant-negative effect.

View Article and Find Full Text PDF

Promotes Cell Expansion by Negatively Regulating Cell Wall Modification.

Int J Mol Sci

January 2025

The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.

Soybean is an important and versatile crop worldwide. Enhancing soybean architecture offers a potential method to increase yield. Plant-specific transcription factors play a crucial, yet often unnoticed, role in regulating plant growth and development.

View Article and Find Full Text PDF

Construction of Promoter Elements for Strong, Moderate, and Weak Gene Expression in .

Genes (Basel)

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Str., Moscow 119334, Russia.

Background/objectives: Transcriptional promoters play an essential role in regulating protein expression. Promoters with weak activity generally lead to low levels of expression, resulting in fewer proteins being produced. At the same time, strong promoters are commonly used in studies using transgenic organisms as model systems.

View Article and Find Full Text PDF

Homeobox C4 transcription factor promotes adipose tissue thermogenesis.

Diabetes

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!