The channels that control K+ homeostasis by mediating K+ secretion across the apical membrane of renal tubular cells have recently been cloned and designated ROMK1, -2, and -3. Native apical K+ channels are indirectly regulated by the K+ concentration at the basolateral membrane through a cascade of intracellular second messengers. It is shown here that ROMK1 (Kir1.1) channels are also directly regulated by the extracellular (apical) K+ concentration, and that this K+ regulation is coupled to intracellular pH. The K+ regulation and its coupling to pH were assigned to different structural parts of the channel protein. K+ regulation is determined by the core region, which comprises the two hydrophobic segments M1 and M2 and the P region. Decoupling from pH was achieved by exchanging the N terminus of ROMK1 by that of the pH-insensitive channel IRK1 (Kir2.1). These results suggest an allosteric regulation of ROMK1 channels by extracellular K+ and intracellular pH, which may represent a novel link between K+ homeostasis and pH control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.271.29.17261 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!