By assaying lysates of Escherichia coli generated with the hybrid lambda bacteriophages of an ordered library (Kohara, Y., Akiyama, K., and Isono, K. (1987) Cell 50, 495-508), we identified two clones (lambda232 and lambda233) capable of overexpressing the lauroyl transferase that functions after 3-deoxy-D-manno-octulosonic acid (Kdo) addition in lipid A biosynthesis (Brozek, K. A., and Raetz, C. R. H. (1990) J. Biol. Chem. 265, 15410-15417). The E. coli DNA inserts in lambda232 and lambda233 suggested that a known gene (htrB) required for rapid growth above 33 degrees C might encode the lauroyl transferase. Using the intermediate (Kdo)2-lipid IVA as the laurate acceptor, extracts of strains with transposon insertions in htrB were found to contain no lauroyl transferase activity. Cells harboring hybrid htrB+ plasmids overproduced transferase activity 100-200-fold. The overproduced transferase was solubilized with a non-ionic detergent and purified further by DEAE-Sepharose chromatography. With lauroyl acyl carrier protein as the donor, the purified enzyme rapidly incorporated one laurate residue into (Kdo)2-lipid IVA. The rate of laurate incorporation was reduced by several orders of magnitude when either one or both Kdos were absent in the acceptor. With a matched set of acyl-acyl carrier proteins, the enzyme incorporated laurate 3-8 times faster than decanoate or myristate, respectively. Transfer of palmitate, palmitoleate, or R-3-hydroxymyristate was very slow. Taken together with previous studies, our findings indicate that htrB encodes a key, late functioning acyltransferase of lipid A biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.271.20.12095DOI Listing

Publication Analysis

Top Keywords

lauroyl transferase
12
escherichia coli
8
lambda232 lambda233
8
lipid biosynthesis
8
kdo2-lipid iva
8
transferase activity
8
overproduced transferase
8
incorporated laurate
8
laurate
5
transferase
5

Similar Publications

Potential of gut microbiota for lipopolysaccharide biosynthesis in European women with type 2 diabetes based on metagenome.

Front Cell Dev Biol

October 2022

Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

The abnormal accumulation of lipopolysaccharide (LPS) plays a crucial role in promoting type 2 diabetes (T2D). However, the capability of the gut microbiota to produce LPS in patients with T2D is still unclear, and evidence characterizing the patterns of gut microbiota with LPS productivity remains rare. This study aimed to uncover the profiles of LPS-biosynthesis-related enzymes and pathways, and explore the potential of LPS-producing gut microbiota in T2D.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) constitutes the major component of the outer membrane and is essential for bacteria, such as . Recent work has revealed the essential roles of LapB and LapC proteins in regulating LPS amounts; although, if any additional partners are involved is unknown. Examination of proteins co-purifying with LapB identified LapD as a new partner.

View Article and Find Full Text PDF

Structural insights into the substrate selectivity of α-oxoamine synthases from marine Vibrio sp. QWI-06.

Colloids Surf B Biointerfaces

February 2022

Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan. Electronic address:

Pyridoxal phosphate (PLP)-dependent α-oxoamine synthases are generally believed to be responsible for offloading and elongating polyketides or catalyzing the condensation of amino acids and acyl-CoA thioester substrates, such as serine into sphingolipids and cysteate into sulfonolipids. Previously, we discovered vitroprocines, which are tyrosine- and phenylalanine-polyketide derivatives, as potential new antibiotics from the genus Vibrio. Using bioinformatics analysis, we identified putative genes of PLP-dependent enzyme from marine Vibrio sp.

View Article and Find Full Text PDF

Remodelin is a small molecule inhibitor of N-acetyltransferase 10 (NAT10), reported to reverse the effect of cancer conditions such as epithelial to mesenchymal transition, hypoxia, and drug resistance. We analysed RNA seq data of siNAT10 and found many metabolic pathways were altered, this made us perform unbiased metabolic analysis. Here we performed untargeted metabolomics in Remodelin treated cancer cells using high-performance liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

To identify the physiological factors that limit the growth of K-12 strains synthesizing minimal lipopolysaccharide (LPS), we describe the first construction of strains devoid of the entire locus and concomitantly lacking all three acyltransferases (LpxL/LpxM/LpxP), synthesizing minimal lipid IV derivatives with a restricted ability to grow at around 21 °C. Suppressors restoring growth up to 37 °C of Δ() identified two independent single-amino-acid substitutions-P50S and R310S-in the LPS flippase MsbA. Interestingly, the cardiolipin synthase-encoding gene was found to be essential for the growth of Δ, Δ, Δ, and Δ() bacteria, with a conditional lethal phenotype of Δ(), which could be overcome by suppressor mutations in MsbA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!