A "Schrodinger Cat" Superposition State of an Atom.

Science

The authors are in the Time and Frequency Division, MS 847, National Institute of Standards and Technology, Boulder, CO 80303, USA.

Published: May 1996

A "Schrodinger cat"-like state of matter was generated at the single atom level. A trapped 9Be+ ion was laser-cooled to the zero-point energy and then prepared in a superposition of spatially separated coherent harmonic oscillator states. This state was created by application of a sequence of laser pulses, which entangles internal (electronic) and external (motional) states of the ion. The Schrodinger cat superposition was verified by detection of the quantum mechanical interference between the localized wave packets. This mesoscopic system may provide insight into the fuzzy boundary between the classical and quantum worlds by allowing controlled studies of quantum measurement and quantum decoherence.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.272.5265.1131DOI Listing

Publication Analysis

Top Keywords

"schrodinger cat"
4
cat" superposition
4
superposition state
4
state atom
4
atom "schrodinger
4
"schrodinger cat"-like
4
cat"-like state
4
state matter
4
matter generated
4
generated single
4

Similar Publications

Wignerian symplectic covariance approach to the interaction-time problem.

Sci Rep

December 2024

Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059, Kraków, Poland.

The concept of the symplectic covariance property of the Wigner distribution function and the symplectic invariance of the Wigner-Rényi entropies has been leveraged to estimate the interaction time of the moving quantum state in the presence of an absolutely integrable time-dependent potential. For this study, the considered scattering centre is represented initially by the Gaussian barrier. Two modifications of this potential energy are considered: a sudden change from barrier to barrier and from barrier to well.

View Article and Find Full Text PDF

Many-particle entanglement is a key resource for achieving the fundamental precision limits of a quantum sensor. Optical atomic clocks, the current state of the art in frequency precision, are a rapidly emerging area of focus for entanglement-enhanced metrology. Augmenting tweezer-based clocks featuring microscopic control and detection with the high-fidelity entangling gates developed for atom-array information processing offers a promising route towards making use of highly entangled quantum states for improved optical clocks.

View Article and Find Full Text PDF

High-dimensional quantum information processing has emerged as a promising avenue to transcend hardware limitations and advance the frontiers of quantum technologies. Harnessing the untapped potential of the so-called qudits necessitates the development of quantum protocols beyond the established qubit methodologies. Here, we present a robust, hardware-efficient, and scalable approach for operating multidimensional solid-state systems using Raman-assisted two-photon interactions.

View Article and Find Full Text PDF

We uncover new features on the study of a two-level atom interacting with one of two cavities in a coherent superposition. The James-Cummings model is used to describe the atom-field interaction and to study the effects of quantum indefiniteness on such an interaction. We show that coherent control of the two cavities in an undefined manner allows novel possibilities to manipulate the atomic dynamics on demand which are not achievable in the conventional way.

View Article and Find Full Text PDF

The Jordan-Schwinger map allows us to go from a matrix representation of any arbitrary Lie algebra to an oscillator (bosonic) representation. We show that any Lie algebra can be considered for this map by expressing the algebra generators in terms of the oscillator creation and annihilation operators acting in the Hilbert space of quantum oscillator states. Then, to describe quantum states in the probability representation of quantum oscillator states, we express their density operators in terms of conditional probability distributions (symplectic tomograms) or Husimi-like probability distributions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!