The distance between bacterial species in sequence space.

J Mol Evol

Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR Scotland.

Published: June 1996

Despite the revolution caused by information from macromolecular sequences, the basis of bacterial classification remains the genus and the species. How do these terms relate to the variety of bacteria that exist on earth? In this paper, the inter- and intraspecies differences in amino acid sequence of several bacterial electron transport proteins, cytochromes c, and blue copper proteins are compared. For the soil and water organisms studied, bacterial species can be classed as "tight" when there is little intraspecies variation, or "loose" when this variation is large. For this set of proteins and organisms, interspecies variation is much larger than that within a species. Examples of "tight" species are Pseudomonas aeruginosa and Rhodobacter sphaeroides, while Pseudomonas stutzeri and Rhodopseudomonas palustris are loose species. The results are discussed in the context of the origin and age of bacterial species, and the distribution of genomes in "sequence space." The situation is probably different for commensal or pathogenic bacteria, whose population structure and evolution are linked to the properties of another organism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02338795DOI Listing

Publication Analysis

Top Keywords

bacterial species
12
species
7
distance bacterial
4
species sequence
4
sequence space
4
space despite
4
despite revolution
4
revolution caused
4
caused macromolecular
4
macromolecular sequences
4

Similar Publications

Introduction: Multidrug-resistant (MDR) bacteria like Proteus species have led to more prolonged hospitalizations, fewer care choices, higher treatment costs, and even death. The present study aims to evaluate the prevalence of MDR Proteus species in clinical samples and to suggest the best therapeutic options for the MDR Proteus species.

Methodology: Clinical samples were collected randomly from five hospitals in Golestan Province, Iran, from February 2017 to July 2019.

View Article and Find Full Text PDF

Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

Photosynthesis-Inspired NIR-Triggered Fe₃O₄@MoS₂ Core-Shell Nanozyme for Promoting MRSA-Infected Diabetic Wound Healing.

Adv Healthc Mater

January 2025

National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.

View Article and Find Full Text PDF

Genetic transformation is a powerful tool in plant biotechnology. However, its application is limited to species that are well-studied and easy to transform. There is a critical need to establish transformation protocols for non-model species.

View Article and Find Full Text PDF

causes hospital-acquired infections in human patients with compromised immune system. Strains associated to nosocomial infections are often resistant to carbapenems and belong to few international clones (IC1-11). .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!