The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb3-type cytochrome oxidase.

Arch Microbiol

Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland.

Published: May 1996

We report structural and functional analyses of the Bradyrhizobium japonicum fixGHIS genes, which map immediately downstream of the fixNOQP operon for the symbiotically essential cbb3-type heme-copper oxidase complex. Expression of fixGHIS, like that of fixNOQP, is strongly induced in cells grown microaerobically or anaerobically. A fixGHI deletion led to the same prominent phenotypes as those known from a fixNOQP deletion: defective symbiotic nitrogen fixation (Fix-) and decreased cytochrome oxidase activity in cells grown under oxygen deprivation. Only traces, if any, of cytochrome cbb3 subunits were present in membranes isolated from the delta fixGHI strain, as revealed by Western blot analysis with subunit-specific antibodies. This effect was not due to lack of fixNOQP transcription. The results suggested a critical involvement of the fixGHIS gene products in the assembly and/or stability of the cbb3-type heme-copper oxidase. On the basis of sequence similarities between the FixI protein and a Cu-transporting P-type ATPase (CopA) of Enterococcus hirae, and between FixG and a membrane-bound oxidoreductase (RdxA) of Rhodobacter sphaeroides, we postulate that a membrane-bound FixGHIS complex might play a role in uptake and metabolism of copper required for the cbb3-type heme-copper oxidase.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002030050330DOI Listing

Publication Analysis

Top Keywords

cbb3-type heme-copper
12
heme-copper oxidase
12
bradyrhizobium japonicum
8
japonicum fixghis
8
fixghis genes
8
cytochrome oxidase
8
cells grown
8
fixghis
5
oxidase
5
genes required
4

Similar Publications

Regulation of fadR on the ROS defense mechanism in Shewanalla oneidensis.

Biotechnol Lett

August 2024

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.

Protein FadR is known as a fatty acid metabolism global regulator that sustains cell envelope integrity by changing the profile of fatty acid. Here, we present its unique participation in the defense against reactive oxygen species (ROS) in the bacterium. FadR contributes to defending extracellular ROS by maintaining the permeability of the cell membrane.

View Article and Find Full Text PDF

Heme-copper oxygen reductases are membrane-bound oligomeric complexes that are integral to prokaryotic and eukaryotic aerobic respiratory chains. Biogenesis of these enzymes is complex and requires coordinated assembly of the subunits and their cofactors. Some of the components are involved in the acquisition and integration of different heme and copper (Cu) cofactors into these terminal oxygen reductases.

View Article and Find Full Text PDF

Unlabelled: Cytochrome c oxidases (CcOs), members of the heme-copper containing oxidase (HCO) superfamily, are the terminal enzymes of aerobic respiratory chains. The cbb3-type cytochrome c oxidases (cbb3-CcO) form the C-family and have only the central catalytic subunit in common with the A- and B-family HCOs. In Pseudomonas stutzeri, two cbb3 operons are organized in a tandem repeat.

View Article and Find Full Text PDF

Copper (Cu) is an essential micronutrient that functions as a cofactor in several important enzymes, such as respiratory heme-copper oxygen reductases. Yet, Cu is also toxic and therefore cells engage a highly coordinated Cu uptake and delivery system to prevent the accumulation of toxic Cu concentrations. In this study, we analyzed Cu delivery to the cbb3 -type cytochrome c oxidase (cbb3 -Cox) of Rhodobacter capsulatus.

View Article and Find Full Text PDF

The C-family (cbb3) of heme-copper oxygen reductases are proton-pumping enzymes terminating the aerobic respiratory chains of many bacteria, including a number of human pathogens. The most common form of these enzymes contains one copy each of 4 subunits encoded by the ccoNOQP operon. In the cbb3 from Rhodobacter capsulatus, the enzyme is assembled in a stepwise manner, with an essential role played by an assembly protein CcoH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!