Understanding and being able to manipulate intracellular signaling pathways which control VSMC gene expression and proliferation will be important in efforts to control neointimal hyperplastic vascular diseases. Activation of the protein kinase C (PKC) family of enzymes is a central event in growth factor-stimulated cells. PKC activation results in the activation of downstream protein kinases including mitogen activated protein kinase (MAPK). PKC isozymes alpha (alpha) and delta (delta) predominate in cultured rat aortic VSMC and both isozymes are completely downregulated upon prolonged (16-24 hr) stimulation with the PKC activator, phorbol 12,13 dibutyrate (PDBu). At these low levels of PKC, MAPK activation in response to PDBu is nearly abolished. To assess the role of specific PKC isozymes in regulating MAPK, isozyme-specific antisense oligodeoxynucleotides (ODNs) were used to inhibit reexpression of PKC in downregulated cells. ODNs were phosphorothioated to increase stability and contained C-5 propynyl modified pyrimidines which are reported to have increased binding affinity. ODNs were administered in low concentration (400 nM) with a cationic liposome carrier (Lipofectin; GibcoBRL). Optical imaging of cells treated with FITC-labeled ODNs confirmed that virtually all cells took up the ODNs within 2 hr. With this technique, PKCalpha-specific antisense ODNs selectively inhibited PKCalpha recovery compared to cells treated with an equal length nonsense ODN (76 +/- 3.9, P < 0.001), with no effect on recovery of PKCdelta. However, activation of MAPK by PDBu was not significantly inhibited in these PKCalpha downregulated cells. This suggests that only a small amount of the total PKCalpha is required for PDBu induced activation of MAPK and/or that PKCdelta can mediate the response. Manipulation of PKC isozymes using this model system should allow assessment of the roles of specific isozymes in controlling diverse downstream effectors and events related to VSMC growth and proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jsre.1996.0236 | DOI Listing |
BMC Cancer
January 2025
Department of Biomedical Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, P.O. Box 79, Ethiopia.
Background: Chemotherapy is a well-established therapeutic approach for several malignancies, including breast cancer (BCa). However, the clinical efficacy of this drug is limited by cardiotoxicity. Assessing multiple cardiac biomarkers can help identify patients at risk of adverse outcomes from chemotherapy.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
FMS-like tyrosine kinase-3 (FLT3), a class 3 receptor tyrosine kinase, can be activated by mutations of internal tandem duplication (FLT3-ITD) or point mutations in the tyrosine kinase domain (FLT3-TKD), leading to constitutive activation of downstream signaling cascades, including the JAK/STAT5, PI3K/AKT/mTOR and RAS/MAPK pathways, which promote the progression of leukemic cells. Despite the initial promise of FLT3 inhibitors, the discouraging outcomes in the treatment of FLT3-ITD-positive acute myeloid leukemia (AML) promote the pursuit of more potent and enduring therapeutic approaches. The histone acetyltransferase complex comprising the E1A binding protein P300 and its paralog CREB-binding protein (p300/CBP) is a promising therapeutic target, but the development of effective p300/CBP inhibitors faces challenges due to inherent resistance and low efficacy, often exacerbated by the absence of reliable clinical biomarkers for patient stratification.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA.
Inhibition of the target of rapamycin (TOR/mTOR) protein kinase by the drug rapamycin extends lifespan and health span across diverse species. However, rapamycin has potential off-target and side effects that warrant the discovery of additional TOR inhibitors. TOR was initially discovered in Saccharomyces cerevisiae (yeast) which contains two TOR paralogs, TOR1 and TOR2.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Research and Innovation Center, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China.
Investigating plasma proteomic signatures of dementia offers insights into its pathology, aids biomarker discovery, supports disease monitoring, and informs drug development. Here, we analyzed data from 48,367 UK Biobank participants with proteomic profiling. Using Cox and generalized linear models, we examined the longitudinal associations between proteomic signatures and dementia-related phenotypes.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia;
Novel radiation sensitizers, including inhibitors targeting DNA damage response, have been developed to enhance the efficacy of anticancer treatments that induce DNA damage in cancer cells. Peposertib, a potent, selective, and orally administered inhibitor of DNA-dependent protein kinase, impedes the nonhomologous end-joining mechanism for DNA double-strand break (DSB) repair. We investigated radioimmunotherapy alone or with peposertib in preclinical models of renal cell carcinoma (RCC) or prostate cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!