The relative contribution of mutation and purifying selection to transition bias has not been quantitatively assessed in mitochondrial protein genes. The observed transition/transversion (s/v) ratio is (micros Ps)/(microv Pv), where micros and microv denote mutation rate of transitions and transversions, respectively, and Ps and Pv denote fixation probabilities of transitions and transversions, respectively. Because selection against synonymous transitions can be assumed to be roughly equal to that against synonymous transversions, Ps/Pv approximately 1 at fourfold degenerate sites, so that the s/v ratio at fourfold degenerate sites is approximately micros/microv, which is a measure of mutational contribution to transition bias. Similarly, the s/v ratio at nondegenerate sites is also an estimate of micros/microv if we assume that selection against nonsynonymous transitions is roughly equal to that against nonsynonymous transversions. In two mitochondrial genes, cytochrome oxidase subunit I (COI) and cytochrome b (cyt-b) in pocket gophers, the s/v ratio is about two at nondegenerate and fourfold degenerate sites for both the COI and the cyt-b genes. This implies that mutation contribution to transition bias is relatively small. In contrast, the s/v ratio is much greater at twofold degenerate sites, being 48 for COI and 40 for cyt-b. Given that the micros/microv ratio is about 2, the Ps/Pv ratio at twofold degenerate sites must be on the order of 20 or greater. This suggests a great effect of purifying selection on transition bias in mitochondrial protein genes because transitions are synonymous and transversions are nonsynonymous at twofold degenerate sites in mammalian mitochondrial genes. We also found that nonsynonymous mutations at twofold degenerate sites are more neutral than nonsynonymous mutations at nondegenerate sites, and that the COI gene is subject to stronger purifying selection than is the cyt-b gene. A model is presented to integrate the effect of purifying selection, codon bias, DNA repair and GC content on s/v ratio of protein-coding genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02352297 | DOI Listing |
Prog Retin Eye Res
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China. Electronic address:
RNA methylation is a pivotal epigenetic modification that adjusts various aspects of RNA biology, including nuclear transport, stability, and the efficiency of translation for specific RNA candidates. The methylation of RNA involves the addition of methyl groups to specific bases and can occur at different sites, resulting in distinct forms, such as N6-methyladenosine (mA), N1-methyladenosine (mA), 5-methylcytosine (mC), and 7-methylguanosine (mG). Maintaining an optimal equilibrium of RNA methylation is crucial for fundamental cellular activities such as cell survival, proliferation, and migration.
View Article and Find Full Text PDFJ Biol Chem
January 2025
UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge, CB2 0AH, United Kingdom. Electronic address:
The assembly of tau into filaments defines tauopathies, a group of neurodegenerative diseases including Alzheimer's disease (AD), Pick's disease (PiD), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). The seeded aggregation of tau has been modelled in cell culture using pro-aggregant modifications such as truncation of N- and C-termini and point-mutations within the microtubule-binding repeat domain. This limits the applicability of research findings to sporadic disease, where aggregates contain wild-type, full-length tau.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits.
View Article and Find Full Text PDFJ Orthop Translat
January 2025
Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
The orthopaedic community frequently encounters polytrauma individuals with concomitant traumatic brain injury (TBI) and their fractures demonstrate accelerated fracture union, but the mechanisms remain far from clear. Animal and clinical studies demonstrate robust callus formation at the early healing process and expedited radiographical union. In humans, robust callus formation in TBI occurs independently of fracture fixation methods across multiple fracture sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!