The distribution of F-actin, vimentin and alpha-tubulin was studied immunohistochemically in bovine seminiferous and straight testicular tubules, rete testis and intertubular tissue during postnatal development. Sites of antigenicity were detected by ABC immunoperoxidase technique and visualized by metal-enhanced deposition of diaminobenzidine. Within the seminiferous epithelium, F-actin appears at 20 weeks and is found in adult Sertoli cells as part of specialized cell contacts. In peritubular cells, F-actin increases gradually from 4 to 30 weeks when the adult concentration is achieved. After 20 weeks, subepithelial fibroblasts of the mediastinum testis start to express F-actin and at 52 weeks, a thick layer of positive myofibroblasts is seen beneath the epithelia of rete testis and straight testicular tubules. Testicular macrophages and light intercalated cells (LIC) are also characteristically decorated following F-actin immunoreaction. Vimentin is localized in perinuclear position in pre-Sertoli cells of 4-20 weeks and in adult Sertoli cells. During the period of transformation from pre-Sertoli to Sertoli cells, the perinuclear vimentin coat is absent. The epithelia of rete testis and straight tubules exhibit a strong vimentin immunoreaction in their basal parts. This specific pattern does not change from 4 weeks to adulthood. Alpha -tubulin is absent in 4-week-old seminiferous tubules. At 8 weeks, the perinuclear area of pre-Sertoli cells reacts positive. The alpha-tubulin content increases in these cells continuously, and from 30 weeks on nearly the entire supranuclear cytoplasm of Sertoli cells is heavily decorated. The epithelial of rete and straight tubules display a growing number of alpha-tubulin-positive cells from 4 to 40 weeks. From then on, nearly all epithelial cells contain alpha-tubulin, particularly in a narrow zone beneath their lateral cell borders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000147727 | DOI Listing |
BMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
Hum Reprod Update
January 2025
Amsterdam UMC, Location Vrije Universiteit Amsterdam, Centre of Expertise on Gender Dysphoria, Amsterdam, The Netherlands.
Background: Transgender and gender diverse (TGD) people seek gender-affirming care at any age to manage gender identities or expressions that differ from their birth gender. Gender-affirming hormone treatment (GAHT) and gender-affirming surgery may alter reproductive function and/or anatomy, limiting future reproductive options to varying degrees, if individuals desire to either give birth or become a biological parent.
Objective And Rationale: TGD people increasingly pursue help for their reproductive questions, including fertility, fertility preservation, active desire for children, and future options.
Curr Issues Mol Biol
December 2024
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity.
View Article and Find Full Text PDFCells
January 2025
Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Phosphodiesterases, particularly the type 5 isoform (PDE5), have gained recognition as pivotal regulators of male reproductive physiology, exerting significant influence on testicular function, sperm maturation, and overall fertility potential. Over the past several decades, investigations have expanded beyond the original therapeutic intent of PDE5 inhibitors for erectile dysfunction, exploring their broader reproductive implications. This narrative review integrates current evidence from in vitro studies, animal models, and clinical research to clarify the roles of PDEs in effecting the male reproductive tract, with an emphasis on the mechanistic pathways underlying cyclic nucleotide signaling, the cellular specificity of PDE isoform expression, and the effects of PDE5 inhibitors on Leydig and Sertoli cell functions.
View Article and Find Full Text PDFZool Res
January 2025
Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.
Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in non-obstructive azoospermia (NOA), a severe form of male infertility. However, the precise mechanisms linking fatty acid metabolism to NOA pathogenesis have not yet been fully elucidated. Multi-omics analyses, including microarray analysis, single-cell RNA sequencing (scRNA-seq), and metabolomics, were utilized to investigate disruptions in fatty acid metabolism associated with NOA using data from public databases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!