The cytoplasmic domain of the erythropoietin receptor (EpoR) contains a membrane-distal region that is dispensable for mitogenesis but is required for the recruitment and tyrosine phosphorylation of a variety of signaling proteins. The membrane-proximal region of 96 amino acids is necessary and sufficient for mitogenesis as well as Jak2 activation, induction of c-fos, c-myc, cis, the T-cell receptor gamma locus (TCR-gamma), and c-pim-1. The studies presented here demonstrate that this region is also necessary and sufficient for the activation of Stat5A and Stat5B. The membrane-proximal domain contains a single tyrosine, Y-343, which when mutated eliminates the ability of the receptor to couple Epo binding to the activation of Stat5. Furthermore, peptide competitions demonstrate that this site, when phosphorylated, can disrupt Stat5 DNA binding activity, consistent with a role of Y-343 as a site of recruitment to the receptor. Cells expressing the truncated, Y343F mutant (a mutant with a Y-to-F alteration at position 343) proliferate in response to Epo in a manner comparable to that of the controls. However, in these cells, Epo stimulation does not induce the appearance of transcripts for cis, TCR-gamma, or c-fos, suggesting a role for Stat5 in their regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC231148PMC
http://dx.doi.org/10.1128/MCB.16.4.1622DOI Listing

Publication Analysis

Top Keywords

activation stat5
8
receptor
5
erythropoietin induces
4
activation
4
induces activation
4
stat5
4
stat5 association
4
association specific
4
specific tyrosines
4
tyrosines receptor
4

Similar Publications

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

STAT5B is a vital transcription factor for lymphocytes. Here, function of two STAT5B mutations from human T cell leukemias: one substituting tyrosine 665 with phenylalanine (STAT5B ), the other with histidine (STAT5B ) was interrogated. modeling predicted divergent energetic effects on homodimerization with a range of pathogenicity.

View Article and Find Full Text PDF

Sphingosylphosphorylcholine (SPC) is one of sphingomyelin-derived sphingolipids. SPC levels are increased in ascitic fluids of ovarian cancer patients and stratum corneum of atopic dermatitis (AD) patients. SPC has antitumor activity against several cancer cells by reducing proliferation and migration and increasing apoptosis .

View Article and Find Full Text PDF

The histone lactylation of AIM2 influences the suppression of ferroptosis by ACSL4 through STAT5B and promotes the progression of lung cancer.

FASEB J

January 2025

Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Lung cancer progression is characterized by intricate epigenetic changes that impact critical metabolic processes and cell death pathways. In this study, we investigate the role of histone lactylation at the AIM2 locus and its downstream effects on ferroptosis regulation and lung cancer progression. We utilized a combination of biochemical assays, including chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and western blotting to assess histone lactylation levels and gene expression.

View Article and Find Full Text PDF

A new pipeline SPICE identifies novel JUN-IKZF1 composite elements.

Elife

January 2025

Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, United States.

Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!