Interpolation of body surface potential maps.

J Electrocardiol

Department of Medical Informatics, Erasmus University, Rotterdam, The Netherlands.

Published: July 1996

The performance of four methods for interpolation of body surface potential maps (BSPMs) for different electrode grid densities was assessed. This study is part of a research project on the influence of the variability of 12-lead electrocardiograms on computer interpretation due to small electrode position changes. Interpolated BSPMs can be used to simulate this variability. The set of BSPMs studied, derived from a 117-electrode grid with relatively many electrodes on the left precordial part of the thorax, consisted of 232 cases without abnormalities, 277 with infarction, and 237 with left ventricular hypertrophy. The interpolation methods used were fast Fourier transforms, Chebyshev polynomials, linear functions, and cubic splines (CS). In the horizontal plane, a reference signal was first interpolated and, thereafter, resampled using 11 different sets of electrodes with the number of electrodes ranging from 18 down to 8. In the vertical direction, five grids with electrodes only on the front of the thorax and nine grids with electrodes on the front and back were examined. As a performance measure for interpolation, mean absolute error (MAE) was used: the absolute differences between the reference signal and the interpolated signal, averaged over the QRS on all maps. All methods showed deteriorating performance for decreasing grid density. In the horizontal direction, CS proved to be slightly superior to other methods for the left precordial electrodes for all but the densest grid (e.g., MAE = 22.8 microV vs MAE > 24.8 microV for a 12-electrode grid). For electrodes not in that area, CS performed the best as well (MAE = 16.1 microV for the same grid), with differences with the other methods being small (MAE > 16.4 microV). In the vertical direction, CS showed the best results on the front, both for the dense nonperiodic (MAE = 19.1 microV vs MAE > 26.6 microV for a 6-electrode grid) and periodic grids (MAE = 25.1 microV vs MAE > 26.6 microV for a 12-electrode grid). Linear functions performed best for sparse nonperiodic grids and sparse periodic grids for electrodes on the back, with the difference with CS for the last case being small. The method CS performed best overall, and is recommended for interpolating BSPMs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-0736(95)80034-4DOI Listing

Publication Analysis

Top Keywords

grids electrodes
12
microv mae
12
performed best
12
mae
9
interpolation body
8
body surface
8
surface potential
8
potential maps
8
grid
8
electrodes
8

Similar Publications

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

Muscle activity mapping by single peak localization from HDsEMG.

J Electromyogr Kinesiol

January 2025

Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden.

Human-machine interfaces using electromyography (EMG) offer promising applications in control of prosthetic limbs, rehabilitation assessment, and assistive technologies. These applications rely on advanced algorithms that decode the activation patterns of muscles contractions. This paper presents a new approach to assess and decode muscle activity by localizing the origin of individual temporal peaks in high-density surface EMG recordings from the dorsal forearm during low force finger extensions.

View Article and Find Full Text PDF

Direct synthesis of multilayer graphene on a microscale ridge-patterned copper substrate.

Micron

December 2024

School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Graphene's exceptional physical properties, such as high thermal conductivity and mechanical strength, have attracted significant interest for its integration in transistors and thermal interface materials. While achieving various conformations of graphene is desirable for such applications, synthesizing graphene with target conformations remains a challenge. In this work, we present a method for synthesizing multilayer graphene with ridged conformations, using a microscale ridge-patterned copper (Cu) layer that was epitaxially deposited on a sapphire substrate.

View Article and Find Full Text PDF

Surface electromyography (sEMG) is useful for studying muscle function and controlling prosthetics, but cross talk from nearby muscles often limits its effectiveness. High-density surface EMG (HD-sEMG) improves spatial resolution, allowing for the isolation of M-waves in the densely packed forearm muscles. This study assessed HD-sEMG for localizing M-waves and evaluated the impact of spatial filters on cross talk reduction.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) are evolving toward higher electrode count and fully implantable solutions, which require extremely low power densities (<15mW cm). To achieve this target, and allow for a large and scalable number of channels, flexible electronics can be used as a multiplexing interface. This work introduces an active analog front-end fabricated with amorphous Indium-Gallium-Zinx-Oxide (a-IGZO) Thin-Film Transistors (TFTs) on foil capable of active matrix multiplexing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!