We have previously shown that a DNA-binding factor specific to adult hematopoietic cells (polypryrimidine-binding factor, PYBF) binds to a pyrimidine-rich region 1 kb upstream from the human delta-globin-encoding gene (HBD). The developmental stage-specificity of PYBF and the location of its binding site between the fetal and adult beta-globin (HBB)-like genes suggest that PBYF and its binding site may function in fetal-to-adult globin gene switching. Here, we describe the effect of 383-bp (delta383) and 99-bp (delta99) sequences containing the PYBF-binding site on transcription from various globin and non-globin promoters, using a transient assay with the cat reporter gene in murine erythroleukemia (MEL) cells, a cell line with abundant PYBF activity. We show that both delta383 and delta99 specifically enhance expression of cat for plasmids containing a human adult globin (HBB) promoter, whereas expression of similar constructs using human fetal (A gamma-) globin (HBG1) or simian virus 40 (SV40) promoters is not enhanced. The results suggest that PYBF and the pyrimidine-rich region upstream from HBD can specifically enhance HBB transcription in adult erythroid cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0378-1119(96)83098-8DOI Listing

Publication Analysis

Top Keywords

upstream human
8
human delta-globin-encoding
8
delta-globin-encoding gene
8
reporter gene
8
murine erythroleukemia
8
pyrimidine-rich region
8
region upstream
8
binding site
8
gene
5
element upstream
4

Similar Publications

DEAD/H Box 5 (DDX5) Augments E2F1-Induced Cell Death Independent of the Tumor Suppressor p53.

Int J Mol Sci

December 2024

Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan.

In almost all cancers, the p53 pathway is disabled and cancer cells survive. Hence, it is crucially important to induce cell death independent of p53 in the treatment of cancers. The transcription factor E2F1 is controlled by binding of the tumor suppressor pRB, and induces apoptosis by activating the gene, an upstream activator of p53, when deregulated from pRB by loss of pRB function.

View Article and Find Full Text PDF

Sociodemographic and Population Exposure to Upstream Oil and Gas Operations in Canada.

Int J Environ Res Public Health

December 2024

School of Health and Human Performance, Dalhousie University, Halifax, NS B3H 4R2, Canada.

Canada, as one of the largest oil and gas producer in the world, is responsible for large emissions of methane, a powerful greenhouse gas. At low levels, methane is not a direct threat to human health; however, human health is affected by exposure to pollutants co-emitted with methane. The objectives of this research were to estimate and map pollutants emitted by the oil and gas industry, to assess the demographic of the population exposed to oil and gas activities, and to characterize the impact of well density on cardiovascular- and respiratory-related outcomes with a focus on Alberta.

View Article and Find Full Text PDF

Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits.

Curr Biol

December 2024

Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:

Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions. It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes. In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.

View Article and Find Full Text PDF

Recent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!