The polymerase chain reaction was used to survey gymnosperm legumin genes. Characterization of 46 cloned amplificates, differing in sequence and size (1.2-1.6 kb), revealed the ubiquitous occurrence of legumin genes and their organization in small subfamilies in the 22 species investigated. The 3' portions of the genes, coding for the legumin beta-polypeptides, show a highly conserved intron/exon structure divergent from those of angiosperms: an additional intron (intron IV) uniformly interrupts the region coding for the C-terminal part of the beta-polypeptides. Phylogenetic analysis of the respective coding sequences as well as the organization of the Magnolia B14 legumin gene also investigated here both indicate that intron IV is ancestral and was lost during early angiosperm evolution. Taking into account the intron/exon structures from all legumin genes known, our results suggest that legumin genes evolved by subsequent loss of introns, providing also further evidence for a common origin of legumins and vicilins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0014-5793(96)00477-2 | DOI Listing |
Plant Cell Physiol
December 2024
RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.
Soybean (Glycine max) is a leguminous crop cultivated worldwide that accumulates high levels of isoflavones. Although previous research has often focused on increasing the soybean isoflavone content because of the estrogen-like activity of dietary soy in humans, the rapidly increasing demand for soybean as a plant-based meat substitute has raised concerns about excessive isoflavone intake. Therefore, the production of isoflavone-free soybean has been anticipated.
View Article and Find Full Text PDFSubabul (Leucaena leucocephala L.) is a leguminous species often referred to as the "miracle tree," it provides numerous ecosystem services and exhibits robust ecological characteristics. However, the infection caused by phytopathogenic fungi is poorly understood in Subabul.
View Article and Find Full Text PDFPeerJ
December 2024
National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
Background: Mungbean () is one of the most socio-economically important leguminous food crops of Asia and a rich source of dietary protein and micronutrients. Understanding its genetic makeup is crucial for genetic improvement and cultivar development.
Methods: In this study, we combined single-tube long-fragment reads (stLFR) sequencing technology with high-throughput chromosome conformation capture (Hi-C) technique to obtain a chromosome-level assembly of cultivar 'KUML4'.
Plants (Basel)
December 2024
College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China.
Glycerol-3-phosphate acyltransferase (GPAT), as a rate-limiting enzyme engaged in lipid synthesis pathways, exerts an important role in plant growth and development as well as environmental adaptation throughout diverse growth stages. Alfalfa ( L.) is one of the most significant leguminous forages globally; however, its growth process is frequently exposed to environmental stress, giving rise to issues such as impeded growth and decreased yield.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, India.
Fusarium oxysporum disrupts redox homeostasis in Vigna mungo, likely by interfering with salicylic acid signaling, which can be ameliorated by boosting PAL and its related pathways via salicylic acid pretreatment. Fusarium oxysporum, a widespread soil-borne fungus, significantly threatens global crops. This study centers on elucidating the infection strategies employed by F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!