Components of the signaling pathways that lie downstream of Ser/Thr kinase receptors and are required for signaling by the TGF beta superfamily have been poorly defined. The Drosophila gene Mothers against dpp (MAD) and the C. elegans sma genes are implicated in these signaling pathways. We show that MAD functions downstream of DPP receptors and is required for receptor signaling. Phosphorylation of MADR1, a human homolog of MAD, is tightly regulated and rapidly induced by BMP2, but not TGF beta or activin. This phosphorylation is necessary for function, since a point mutant that yields a null phenotype in Drosophila is not phosphorylated. BMP2 treatment results in accumulation of MADR1 in the nucleus. MAD proteins may thus define a novel class of signaling molecules with nuclear function in Ser/Thr kinase receptor signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0092-8674(00)81250-7DOI Listing

Publication Analysis

Top Keywords

signaling pathways
16
ser/thr kinase
8
receptors required
8
tgf beta
8
receptor signaling
8
signaling
7
madr1 mad-related
4
mad-related protein
4
protein functions
4
functions bmp2
4

Similar Publications

MAPK-CncC Signaling Pathways Regulate the Antitoxic Response to Avermectin-Induced Oxidative Stress in Juvenile Chinese Mitten Crab, .

Environ Sci Technol

January 2025

Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.

This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.

View Article and Find Full Text PDF

The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.

View Article and Find Full Text PDF

Understanding how epithelial cells in the female reproductive tract (FRT) differentiate is crucial for reproductive health, yet the underlying mechanisms remain poorly defined. At birth, FRT epithelium is highly malleable, allowing differentiation into various epithelial types, but the regulatory pathways guiding these early cell fate decisions are unclear. Here, we use neonatal mouse endometrial organoids and assembloid coculture models to investigate how innate cellular plasticity and external mesenchymal signals influence epithelial differentiation.

View Article and Find Full Text PDF

DNA methylation is known to be associated with cataracts. In this study, we used a mouse model and performed DNA methylation and transcriptome sequencing analyses to find epigenetic indicators for age-related cataracts (ARC). Anterior lens capsule membrane tissues from young and aged mice were analyzed by MethylRAD-seq to detect the genome-wide methylation of extracted DNA.

View Article and Find Full Text PDF

Pseudoexfoliation glaucoma is a severe form of secondary open angle glaucoma and is associated with activation of the TGF-β pathway by TGF-β1. MicroRNAs (miRNAs) are small non-coding RNA species that are involved in regulation of mRNA expression and translation. To investigate what glaucomatous changes occur in the trabecular meshwork and how these changes may be regulated by miRNAs, we performed a bioinformatics analysis resulting in a miRNA-mRNA interactome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!