We recently reported that in stroma-free cultures 11-33% of clonogenic cells derived from a bulk long-term culture [long-term culture-clonogenic cells (LTC-CC)] could be transduced by supernatant exposure or coculture of human CD34+ progenitors with MDR retroviral producer line A12M1. We reasoned that a stromal cell layer may generate niches in which LTC-CC could enter in the S-phase, thus becoming a more accessible target for gene delivery. In static culture studies in flasks, human engineered stromal cell line L87/4 or stromal murine M2-10B4 cells were used as feeder after irradiation, and CD34+ cells from either cord blood or peripheral blood of mobilized cancer patients were exposed to MDR supernatant for 7 consecutive days before 5-week culture for LTC-CC evaluation. In continuous flow perfusion culture studies, CD34+ cells were seeded over irradiated stromal murine M2-1OB4 cells and exposed to MDR supernatant for 7 days before LTC-CC evaluation. In mock-transduced controls, <5% of LTC-CC were found to he viable after exposure to 10 ng/ml Taxol. In cells exposed to MDR supernatant in static stroma cultures, 68 +/- 4% of seeded LTC-CC were found to be drug resistant and express MDR mRNA as evaluated by reverse transcription-PCR analysis of single colonies. The addition of cytokines did not further enhance transfer efficiency. After MDR retroviral exposure in continuous flow cultures, 88 +/- 5% of LTC-CC were found to be drug resistant (P < 0.01 versus static stroma culture). P-glycoprotein expression in CD34+ cells was evaluated using flow cytometry and found to he higher after continuous flow versus static cultures. Finally, very high levels of P-glycoprotein expression after MDR supernatant exposure in the presence of stroma were confirmed by APAAP staining of cultured cells. We conclude that engineered stromal cell layers and continuous flow culture conditions can significantly enhance retroviral-mediated gene transfer into human hematopoietic progenitor cells.
Download full-text PDF |
Source |
---|
Sci Adv
January 2025
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes.
View Article and Find Full Text PDFActa Biomater
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:
Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Biomedical Engineering, School of Life Sciences, Guangxi Medical University, Nanning, China.
Background: The persistently high mortality and morbidity rates of hepatocellular carcinoma (HCC) remain a global concern. Notably, the disruptions in mitochondrial cholesterol metabolism (MCM) play a pivotal role in the progression and development of HCC, underscoring the significance of this metabolic pathway in the disease's etiology. The purpose of this research was to investigate genes associated with MCM and develop a model for predicting the prognostic features of patients with HCC.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
Background: Regulatory T cells (Tregs) play a pivotal role in the development, prognosis, and treatment of breast cancer. This study aimed to develop a Treg-associated gene signature that contributes to predict prognosis and therapy benefits in breast cancer.
Methods: Treg-associated genes were screened based on single-cell RNA-sequencing (RNA-seq) in TISCH2 database and the bulk RNA-seq in The Cancer Genome Atlas (TCGA) database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!