In this paper I suggest that a vastly higher rate of de novo mutations in males than in females would explain some, if not most, X-linked dominant disorders associated with a low incidence of affected males. It is the inclusion of the impact of a high ratio of male:female de novo germ-line mutations that makes this model new and unique. Specifically, it is concluded that, if an X-linked disorder results in a dominant phenotype with a significant reproductive disadvantage (genetic lethality), affected females will, in virtually all cases, arise from de novo germ-line mutations inherited from their fathers rather than from their mothers. Under this hypothesis, the absence of affected males is explained by the simple fact that sons do not inherit their X chromosome (normal or abnormal) from their fathers. Because females who are heterozygous for a dominant disorder will be clinically affected and will, in most cases, either be infertile or lack reproductive opportunities, the mutant gene will not be transmitted by them to the next generation (i.e., it will be a genetic lethal). This, not gestational lethality in males, may explain the absence of affected males in most, if not all, of the 13 known X-linked dominant diseases characterized by high ratios of affected female to male individuals. Evidence suggesting that this mechanism could explain the findings in the Rett syndrome is reviewed in detail.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1915043 | PMC |
JCO Precis Oncol
January 2025
Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI.
Purpose: Although lung cancer is one of the most common malignancies, the underlying genetics regarding susceptibility remain poorly understood. We characterized the spectrum of pathogenic/likely pathogenic (P/LP) germline variants within DNA damage response (DDR) genes among lung cancer cases and controls in non-Hispanic Whites (NHWs) and African Americans (AAs).
Materials And Methods: Rare, germline variants in 67 DDR genes with evidence of pathogenicity were identified using the ClinVar database.
N Biotechnol
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. Electronic address:
Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China.
Signal transducer and activator of transcription 1 (STAT1) gene mutations have broad clinical phenotypes, classified by the inheritance pattern and functional state. Individuals with autosomal dominant STAT1 deficiency are more susceptible to intracellular bacteria, the hallmark of which is Mendelian susceptibility to mycobacterial diseases (MSMDs) that are associated with increased risks of invasive disease by weakly virulent mycobacteria. We report a novel heterozygous missense mutation in exon 23 of the STAT1 gene (NM_007315.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
Background: Lynch syndrome (LS)-associated colorectal cancer (CRC) always ascribes to pathogenic germline mutations in mismatch repair (MMR) genes. However, the penetrance of CRC varies among those with the same MMR gene mutation. Thus, we hypothesized that the gut microbiota is also involved in CRC development in LS families.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.
Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!