The high affinity L-proline transporter (PROT) is a member of the family of Na+ (and Cl-)-dependent plasma membrane transport proteins that comprises transporters for several neurotransmitters, osmolytes, and metabolites. The brain-specific expression of PROT in a subset of putative glutamatergic pathways implies a specialized function for this novel transporter and its presumed natural substrate L-proline in excitatory synaptic transmission. However, definitive studies of the physiological role(s) of high affinity L-proline uptake have been precluded by the lack of specific uptake inhibitors. Here, we report that Leu- and Met-enkephalin and their des-tyrosyl derivatives potently and selectively inhibited high affinity L-proline uptake in rat hippocampal synaptosomes and in PROT-transfected HeLa cells. High concentrations of the opiate receptor antagonist naltrexone did not block the inhibitory actions of these peptides, arguing against an involvement of opioid receptors. Des-tyrosyl-Leu-enkephalin elevated the apparent K(m) of L-proline transport in transfected HeLa cells without altering the V(max). PROT-transfected HeLa cells did not accumulate [3H]Leu-enkephalin above background levels, demonstrating that enkephalins are not substrates for PROT. These findings indicate that enkephalins competitively inhibit mammalian brain PROT through a direct interaction with the transporter protein at or near the L-proline binding site. The high potency and specificity of des-tyrosyl-Leu-enkephalin make this compound a useful tool for elucidating the structure-function properties and physiological role(s) of PROT.

Download full-text PDF

Source

Publication Analysis

Top Keywords

high affinity
16
affinity l-proline
16
hela cells
12
mammalian brain
8
l-proline transporter
8
physiological roles
8
l-proline uptake
8
prot-transfected hela
8
l-proline
7
high
6

Similar Publications

A Quantitative First Passage Time Model for Tubular Microfluidic Immunoassays.

ACS Sens

January 2025

Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Solid-phase immunosorbent reactions, such as ELISA, are widely used for detecting, identifying, and quantifying protein markers. However, traditional centimeter scale well-based immunoreactors suffer from low surface-to-volume (S/V) ratios, leading to large sample consumption and a long assay time. Microfluidic technologies, particularly tubular microfluidic immunoreactors, have emerged as promising alternatives due to their high S/V ratios.

View Article and Find Full Text PDF

A simple and effective method to remove pigments from heterologous secretory proteins expressed in Pichia pastoris.

Adv Biotechnol (Singap)

February 2024

CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.

Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.

View Article and Find Full Text PDF

ISB 1442 is a bispecific biparatopic antibody in clinical development to treat hematological malignancies. It consists of two adjacent anti-CD38 arms targeting non-overlapping epitopes that preferentially drive binding to tumor cells and a low-affinity anti-CD47 arm to enable avidity-induced blocking of proximal CD47 receptors. We previously reported the pharmacology of ISB 1442, designed to reestablish synthetic immunity in CD38+ hematological malignancies.

View Article and Find Full Text PDF

Plastic pollution, particularly microplastics (MPs), poses a significant global threat to ecosystems and human health, necessitating innovative remediation strategies. Biocompatible and biodegradable plastic-binding peptides (PBPs) offer a potential solution through targeted adsorption and subsequent MP detection or removal from the environment. A challenge in discovering plastic-binding peptides is the vast combinatorial space of possible peptides (, over 10 for 12-mer peptides), which far exceeds the sample sizes typically reachable by experiments or biophysics-based computational methods.

View Article and Find Full Text PDF

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

J Cheminform

January 2025

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!