AI Article Synopsis

  • The study focused on female sewing operators using video displays, revealing that they spent 77.6% of their time working and 75.2% specifically at the video display.
  • After just 2 hours of work, their vision function declined, remaining stable until the shift's midpoint, then further decreasing after 10-12 hours.
  • The resulting visual strain was connected to orbital discomfort, highlighting the need for breaks to improve overall performance.

Article Abstract

The examination covered female operators of sewing pickup, engaged into the work at video-displays. The total work load appeared to equal 77.6% and the work at video-display--75.2% of the shift time. Functional state of the vision demonstrated a decrease even after 2 hrs of the work, then stabilized by midpoint of the shift and afterwards lowered by 10-12 hrs of the work. Those objective changes correlated with the sensation of orbital discomfort. The findings served as a base for prophylaxis to restore the performance during the regulated breaks.

Download full-text PDF

Source

Publication Analysis

Top Keywords

functional state
8
hrs work
8
work
6
[changes functional
4
state visual
4
visual analyzer
4
analyzer work
4
work video
4
video display
4
display terminals
4

Similar Publications

Background: Few studies have explored the relationship between macronutrient intake and sleep outcomes using daily data from mobile apps.

Objective: This cross-sectional study aimed to examine the associations between macronutrients, dietary components, and sleep parameters, considering their interdependencies.

Methods: We analyzed data from 4825 users of the Pokémon Sleep and Asken smartphone apps, each used for at least 7 days to record objective sleep parameters and dietary components, respectively.

View Article and Find Full Text PDF

Determining the level of consciousness in patients with brain injury-and more fundamentally, establishing what they can experience-is ethically and clinically impactful. Patient behaviors may unreliably reflect their level of consciousness: a subset of unresponsive patients demonstrate covert consciousness by willfully modulating their brain activity to commands through fMRI or EEG. However, current paradigms for assessing covert consciousness remain fundamentally limited because they are insensitive, rely on imperfect assumptions of functional neuroanatomy, and do not reflect the spectrum of conscious experience.

View Article and Find Full Text PDF

Regioselective [3 + 2] Annulation of β,γ-Alkynyl-α-ketimino Esters with 1,3-Dicarbonyls: The Synthesis of Highly Functionalized Dihydrofurans.

J Org Chem

January 2025

Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China.

A regioselective [3 + 2] annulation of β,γ-alkynyl-α-ketimino esters with 1,3-dicarbonyls is disclosed. A series of -selective dihydrofurans bearing an exocyclic double bond and a quaternary carbon center are accessed without the usage of base. Control and deuterium-labeling experiments have been investigated to probe into the reaction mechanism.

View Article and Find Full Text PDF

A major challenge in the field of synthetic motors relates to mimicking the precise, motion of biological motor proteins, which mediates processes such as cargo transport, cell locomotion, and cell division. To address this challenge, we developed a system to control the motion of DNA-based synthetic motors using light. DNA motors are composed of a central chassis particle modified with DNA "legs" that hybridize to RNA "fuel", and move upon enzymatic consumption of RNA.

View Article and Find Full Text PDF

Accurately calculating the diradical character () of molecular systems remains a significant challenge due to the scarcity of experimental data and the inherent multireference nature of the electronic structure. In this study, various quantum mechanical approaches, including broken symmetry density functional theory (BS-DFT), spin-flip time-dependent density functional theory (SF-TDDFT), mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT), complete active space self-consistent field (CASSCF), complete active space second-order perturbation theory (CASPT2), and multiconfigurational pair-density functional theory (MCPDFT), are employed to compute the singlet-triplet energy gaps () and values in Thiele, Chichibabin, and Müller analogous diradicals. By systematically comparing the results from these computational methods, we identify optimally tuned long-range corrected functional CAM-B3LYP in the BS-DFT framework as a most efficient method for accurately and affordably predicting both and values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!