Based on the hypothesis that acceleration of repopulation in skin during fractionated irradiation is triggered by an inflammatory response of the dermis to radiation-induced epidermal hypoplasia, we produced a mild erythema by exposure to UVB radiation before applying different X-irradiation schedules. At different times ranging from 6 h to 14 days after a single exposure to UVB radiation which caused a distinct erythema, a 2-cm skin field on the legs of mice was irradiated with either different single doses or five daily fractions of 3 Gy followed by different single top-up doses of 300 kV X rays. Skin reactions were scored daily for 4 weeks and the occurrence of moist desquamation was taken to construct dose-response curves and to calculate ED50 values. Five days after exposure to UVB radiation and later, radioresistance of epidermis to single and fractionated X irradiation was significantly increased. Results were analyzed using the linear-quadratic formalism to identify possible mechanisms for this UV-radiation-induced radioresistance. The data suggest that exposure to UVB radiation led to a gradual increase in the number of epidermal stem cells and their repopulation rate.
Download full-text PDF |
Source |
---|
Front Med (Lausanne)
January 2025
Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Łódź, Łódź, Poland.
Introduction: Inflammasomes NLRP1 (NLR family pyrin domain containing 1) and NLRP3 are pivotal regulators of the innate immune response, activated by a spectrum of endogenous and exogenous stressors, including ultraviolet radiation (UVR). The precise molecular mechanisms underlying the activation of these inflammasomes remain unclear. Furthermore, the involvement of interleukin-33 (IL-33) in UVR-induced skin carcinogenesis is not well defined.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Drexel University College of Medicine, 860 1St Avenue, Suite 8B, Philadelphia, PA, 19406, USA.
UV-A exposure is a major risk factor for melanoma, nonmelanoma skin cancer, photoaging, and exacerbation of photodermatoses. Since people spend considerable time in cars daily, inadequate UV-A attenuation by car windows can significantly contribute to the onset or exacerbation of these skin diseases. Given recent market trends in the automobile industry and known impact of car windows on cumulative lifelong UV damage to the skin, there is a need to comparatively evaluate UV transmission across windows in electric vehicles (EV), hybrid vehicles (HV), and gas vehicles (GV) as well as variability based on year of manufacture and mileage to inform car manufacturers and consumers of the potential for UV exposure to the skin based on vehicle.
View Article and Find Full Text PDFHeliyon
January 2025
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Makkah, 23955, Saudi Arabia.
Antarctica's harsh environmental conditions, characterized by high levels of ultraviolet (UV) radiation, pose challenges for microorganisms. To survive in these extreme cold regions with heightened UV exposure, microorganisms employ various adaptive strategies, including photoprotective carotenoid synthesis. Carotenoids are garnering attention in the skin health industry because of their UV photoprotection potential, given the direct relationship between UV exposure and skin burns, and cancer.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia.
Skin cancer is one of the most common types of cancer worldwide, with exposure to UVB radiation being a significant risk factor for its development. To prevent skin cancer, continuous research efforts have focused on finding suitable photoprotective ingredients from natural sources that are also environmentally friendly. This study aimed to develop oil-in-water photoprotective nanoemulsions containing marine macroalgae extract.
View Article and Find Full Text PDFBiomater Res
January 2025
Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!