Previous studies have shown that gamma interferon (IFN-gamma) plays a major role in natural resistance to Salmonella typhimurium during the early phase of infection. To assess whether the level of natural resistance in mice is related to the level of IFN-gamma gene expression, we compared IFN-gamma mRNA levels by means of reverse transcriptase-PCR in the spleens of genetically susceptible Itys (C57BL/6 and BALB/c) and resistant Ityr (CBA and DBA/2) mice during the first 5 days of infection. The mRNA expression of interleukin-10 (IL-10), a cytokine which antagonizes IFN-gamma effects, was also investigated. Mice were infected with 10(3) CFU of the virulent strain S. typhimurium C5, a dose which is lethal within a week for susceptible mice only. IFN-gamma mRNA increased to similar levels in both susceptible and resistant mice, suggesting that susceptibility to S. typhimurium infection is not related to defective IFN-gamma gene expression. In contrast, IL-10 mRNA reached much higher levels in susceptible than in resistant mice. Similar results were found in Ity congenic mice, confirming a link between the presence of the Itys allele and a high level of IL-10 gene expression during infection. High levels of IL-10 mRNA in susceptible mice correlated with high IL-10 serum levels (on day 5), whereas IL-10 was not detectable in the sera of resistant mice. However, administration of neutralizing anti-IL-10 monoclonal antibodies did not modify the course of infection. To evaluate the influence of bacterial multiplication on IL-10 mRNA expression, susceptible mice were infected with an attenuated strain of S. typhimurium. This strain induced a low level of IL-10 mRNA expression. When susceptible mice were immunized with an attenuated strain and challenged with the virulent strain, they inhibited the growth of the challenge bacteria and exhibited a low level of IL-10 mRNA. In contrast, when resistant mice were infected with a high (lethal) dose of the virulent strain, they exhibited a high level of IL-10 mRNA. Taken together, these results indicate that the level of IL-10 gene expression correlates with the level of bacterial multiplication in the organs and that the high level of IL-10 mRNA in Itys mice is a consequence rather than the cause of their susceptibility to S. typhimurium infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC173847PMC
http://dx.doi.org/10.1128/iai.64.3.849-854.1996DOI Listing

Publication Analysis

Top Keywords

il-10 mrna
28
level il-10
24
gene expression
20
resistant mice
20
susceptible mice
16
mice
14
susceptible resistant
12
typhimurium infection
12
mrna expression
12
il-10
12

Similar Publications

Interleukin-10 (IL-10) is an immunomodulatory molecule that may play an immunosuppressive role in nonmelanoma skin cancer (NMSC), specifically basal cell carcinoma (BCC). We analyzed the role of IL10 promoter variants in genetic determinants of BCC susceptibility and their association with IL10 mRNA and IL-10 serum levels. Three promoter variants (- 1082 A > G, - 819 T > C, and - 592 A > C) were examined in 250 BCC patients and 250 reference group (RG) individuals.

View Article and Find Full Text PDF

Objectives: To investigate the mechanism mediating the regulatory effect of miR-155-5p on proliferation of human submandibular gland epithelial cells (HSGECs) in primary Sjogren's syndrome (pSS).

Methods: Dual luciferase reporter assay was used to verify the targeting relationship between miR-155-5p and the PI3K/AKT pathway. In a HSGEC model of pSS induced by simulation with TRAIL and INF-γ, the effects of miR-155-inhibitor-NC or miR-155 inhibitor on cell viability, cell cycle, apoptosis and proliferation were evaluated using CKK8 assay, flow cytometry and colony formation assay.

View Article and Find Full Text PDF

Ferulic acid mediates microbial fermentation of arabinoxylan to enhance host immunity by suppressing TLR4/NF-κB signaling.

Int J Biol Macromol

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

The study was conducted to explore the relationship between arabinoxylan (AX) structure and microbial fermentation characteristics, and reveal molecular mechanism of AX on regulating immune function of the host. Results indicated that the group of wheat bran AX showed greater activity of feruloyl esterase, production of short chain fatty acids and ferulic acid compared with the blank group (P < 0.05).

View Article and Find Full Text PDF

Background: Bronchopulmonary dysplasia (BPD) is a chronic lung disease in premature infants caused by an imbalance between lung injury and lung repair in the developing immature lungs of the newborn. Pulmonary inflammation is an important feature in the pathogenesis of BPD. The aim of this study was to evaluate the relationship between the inflammatory microenvironment and the levels of visfatin and nesfatin-1, which are among the new adipocytokines, in BPD patients.

View Article and Find Full Text PDF

Combined exercise-induced modulation of Notch pathway and muscle quality in senescence-accelerated mice.

Pflugers Arch

January 2025

School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil.

The Notch signaling pathway is crucial for skeletal muscle development, regeneration, inflammation, and aging. This study investigated the association between interleukin-10 (IL-10) and the Notch pathway in C2C12 cells, as well as explored the effects of combined endurance and resistance exercise on the Notch and autophagy pathways in the skeletal muscle of senescence-accelerated mouse-resistant 1 Sedentary (SAMR1 CT), SAMR1 exercised (SAMR1 EX), senescence-accelerated prone mouse 8 Sedentary (SAMP8 CT), and SAMP8 exercised (SAMP8 EX). C2C12 myoblasts were transfected with siIL-10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!